Nikola Sekulovski, Maarten Marsman, Eric-Jan Wagenmakers
{"title":"贝叶斯系数的良好检验","authors":"Nikola Sekulovski, Maarten Marsman, Eric-Jan Wagenmakers","doi":"10.3758/s13428-024-02491-4","DOIUrl":null,"url":null,"abstract":"<p><p>Bayes factor hypothesis testing provides a powerful framework for assessing the evidence in favor of competing hypotheses. To obtain Bayes factors, statisticians often require advanced, non-standard tools, making it important to confirm that the methodology is computationally sound. This paper seeks to validate Bayes factor calculations by applying two theorems attributed to Alan Turing and Jack Good. The procedure entails simulating data sets under two hypotheses, calculating Bayes factors, and assessing whether their expected values align with theoretical expectations. We illustrate this method with an ANOVA example and a network psychometrics application, demonstrating its efficacy in detecting calculation errors and confirming the computational correctness of the Bayes factor results. This structured validation approach aims to provide researchers with a tool to enhance the credibility of Bayes factor hypothesis testing, fostering more robust and trustworthy scientific inferences.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":" ","pages":"8552-8566"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525426/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Good check on the Bayes factor.\",\"authors\":\"Nikola Sekulovski, Maarten Marsman, Eric-Jan Wagenmakers\",\"doi\":\"10.3758/s13428-024-02491-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bayes factor hypothesis testing provides a powerful framework for assessing the evidence in favor of competing hypotheses. To obtain Bayes factors, statisticians often require advanced, non-standard tools, making it important to confirm that the methodology is computationally sound. This paper seeks to validate Bayes factor calculations by applying two theorems attributed to Alan Turing and Jack Good. The procedure entails simulating data sets under two hypotheses, calculating Bayes factors, and assessing whether their expected values align with theoretical expectations. We illustrate this method with an ANOVA example and a network psychometrics application, demonstrating its efficacy in detecting calculation errors and confirming the computational correctness of the Bayes factor results. This structured validation approach aims to provide researchers with a tool to enhance the credibility of Bayes factor hypothesis testing, fostering more robust and trustworthy scientific inferences.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\" \",\"pages\":\"8552-8566\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525426/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-024-02491-4\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02491-4","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Bayes factor hypothesis testing provides a powerful framework for assessing the evidence in favor of competing hypotheses. To obtain Bayes factors, statisticians often require advanced, non-standard tools, making it important to confirm that the methodology is computationally sound. This paper seeks to validate Bayes factor calculations by applying two theorems attributed to Alan Turing and Jack Good. The procedure entails simulating data sets under two hypotheses, calculating Bayes factors, and assessing whether their expected values align with theoretical expectations. We illustrate this method with an ANOVA example and a network psychometrics application, demonstrating its efficacy in detecting calculation errors and confirming the computational correctness of the Bayes factor results. This structured validation approach aims to provide researchers with a tool to enhance the credibility of Bayes factor hypothesis testing, fostering more robust and trustworthy scientific inferences.
期刊介绍:
Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.