{"title":"用于血清诊断和治疗的多通道掺镧纳米探针。","authors":"Dr. Yuxin Liu, Zheng Wei","doi":"10.1002/tcr.202400100","DOIUrl":null,"url":null,"abstract":"<p>In this account, we will highlight recent progress in the development of multichannel lanthanide-doped (MC−Ln) nanoprobes for highly efficient serodiagnosis and therapy, with a particular focus on our own work. First, we first provide a classification of the types of MC−Ln nanoprobes based on the contained type and number of signals. The merits of different types of nanoprobes and the reason using lanthanides are elucidated. Then, we provide an overview of the current uses of MC−Ln nanoprobes in serodiagnosis and therapy, focusing on the strategic exploration to improve the diagnostic and therapeutic performance from different perspectives. Finally, we present a prospective outlook on the future development and potential issues of next-generation MC−Ln nanoprobes. We hope that this timely account will update our understanding of MC−Ln and similar nanoprobes for bioapplications and provide helpful references for the state-of-the-art tools for serodiagnosis and therapy.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tcr.202400100","citationCount":"0","resultStr":"{\"title\":\"Multichannel Lanthanide-Doped Nanoprobes for Serodiagnosis and Therapy\",\"authors\":\"Dr. Yuxin Liu, Zheng Wei\",\"doi\":\"10.1002/tcr.202400100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this account, we will highlight recent progress in the development of multichannel lanthanide-doped (MC−Ln) nanoprobes for highly efficient serodiagnosis and therapy, with a particular focus on our own work. First, we first provide a classification of the types of MC−Ln nanoprobes based on the contained type and number of signals. The merits of different types of nanoprobes and the reason using lanthanides are elucidated. Then, we provide an overview of the current uses of MC−Ln nanoprobes in serodiagnosis and therapy, focusing on the strategic exploration to improve the diagnostic and therapeutic performance from different perspectives. Finally, we present a prospective outlook on the future development and potential issues of next-generation MC−Ln nanoprobes. We hope that this timely account will update our understanding of MC−Ln and similar nanoprobes for bioapplications and provide helpful references for the state-of-the-art tools for serodiagnosis and therapy.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tcr.202400100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202400100\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202400100","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multichannel Lanthanide-Doped Nanoprobes for Serodiagnosis and Therapy
In this account, we will highlight recent progress in the development of multichannel lanthanide-doped (MC−Ln) nanoprobes for highly efficient serodiagnosis and therapy, with a particular focus on our own work. First, we first provide a classification of the types of MC−Ln nanoprobes based on the contained type and number of signals. The merits of different types of nanoprobes and the reason using lanthanides are elucidated. Then, we provide an overview of the current uses of MC−Ln nanoprobes in serodiagnosis and therapy, focusing on the strategic exploration to improve the diagnostic and therapeutic performance from different perspectives. Finally, we present a prospective outlook on the future development and potential issues of next-generation MC−Ln nanoprobes. We hope that this timely account will update our understanding of MC−Ln and similar nanoprobes for bioapplications and provide helpful references for the state-of-the-art tools for serodiagnosis and therapy.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.