Dang Khanh Ngan Ho, Wan-Chun Chiu, Jing-Wen Kao, Hsiang-Tung Tseng, Cheng-Yu Lin, Pin-Hsiang Huang, Yu-Ren Fang, Kuei-Hung Chen, Ting-Ying Su, Chia-Hui Yang, Chih-Yuan Yao, Hsiu-Yueh Su, Pin-Hui Wei, Jung-Su Chang
{"title":"预防心血管疾病的移动营养应用程序的可靠性问题:比较研究","authors":"Dang Khanh Ngan Ho, Wan-Chun Chiu, Jing-Wen Kao, Hsiang-Tung Tseng, Cheng-Yu Lin, Pin-Hsiang Huang, Yu-Ren Fang, Kuei-Hung Chen, Ting-Ying Su, Chia-Hui Yang, Chih-Yuan Yao, Hsiu-Yueh Su, Pin-Hui Wei, Jung-Su Chang","doi":"10.2196/54509","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Controlling saturated fat and cholesterol intake is important for the prevention of cardiovascular diseases. Although the use of mobile diet-tracking apps has been increasing, the reliability of nutrition apps in tracking saturated fats and cholesterol across different nations remains underexplored.</p><p><strong>Objective: </strong>This study aimed to examine the reliability and consistency of nutrition apps focusing on saturated fat and cholesterol intake across different national contexts. The study focused on 3 key concerns: data omission, inconsistency (variability) of saturated fat and cholesterol values within an app, and the reliability of commercial apps across different national contexts.</p><p><strong>Methods: </strong>Nutrient data from 4 consumer-grade apps (COFIT, MyFitnessPal-Chinese, MyFitnessPal-English, and LoseIt!) and an academic app (Formosa FoodApp) were compared against 2 national reference databases (US Department of Agriculture [USDA]-Food and Nutrient Database for Dietary Studies [FNDDS] and Taiwan Food Composition Database [FCD]). Percentages of missing nutrients were recorded, and coefficients of variation were used to compute data inconsistencies. One-way ANOVAs were used to examine differences among apps, and paired 2-tailed t tests were used to compare the apps to national reference data. The reliability across different national contexts was investigated by comparing the Chinese and English versions of MyFitnessPal with the USDA-FNDDS and Taiwan FCD.</p><p><strong>Results: </strong>Across the 5 apps, 836 food codes from 42 items were analyzed. Four apps, including COFIT, MyFitnessPal-Chinese, MyFitnessPal-English, and LoseIt!, significantly underestimated saturated fats, with errors ranging from -13.8% to -40.3% (all P<.05). All apps underestimated cholesterol, with errors ranging from -26.3% to -60.3% (all P<.05). COFIT omitted 47% of saturated fat data, and MyFitnessPal-Chinese missed 62% of cholesterol data. The coefficients of variation of beef, chicken, and seafood ranged from 78% to 145%, from 74% to 112%, and from 97% to 124% across MyFitnessPal-Chinese, MyFitnessPal-English, and LoseIt!, respectively, indicating a high variability in saturated fats across different food groups. Similarly, cholesterol variability was consistently high in dairy (71%-118%) and prepackaged foods (84%-118%) across all selected apps. When examining the reliability of MyFitnessPal across different national contexts, errors in MyFitnessPal were consistent across different national FCDs (USDA-FNDSS and Taiwan FCD). Regardless of the FCDs used as a reference, these errors persisted to be statistically significant, indicating that the app's core database is the source of the problems rather than just mismatches or variances in external FCDs.</p><p><strong>Conclusions: </strong>The findings reveal substantial inaccuracies and inconsistencies in diet-tracking apps' reporting of saturated fats and cholesterol. These issues raise concerns for the effectiveness of using consumer-grade nutrition apps in cardiovascular disease prevention across different national contexts and within the apps themselves.</p>","PeriodicalId":14756,"journal":{"name":"JMIR mHealth and uHealth","volume":"12 ","pages":"e54509"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391091/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reliability Issues of Mobile Nutrition Apps for Cardiovascular Disease Prevention: Comparative Study.\",\"authors\":\"Dang Khanh Ngan Ho, Wan-Chun Chiu, Jing-Wen Kao, Hsiang-Tung Tseng, Cheng-Yu Lin, Pin-Hsiang Huang, Yu-Ren Fang, Kuei-Hung Chen, Ting-Ying Su, Chia-Hui Yang, Chih-Yuan Yao, Hsiu-Yueh Su, Pin-Hui Wei, Jung-Su Chang\",\"doi\":\"10.2196/54509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Controlling saturated fat and cholesterol intake is important for the prevention of cardiovascular diseases. Although the use of mobile diet-tracking apps has been increasing, the reliability of nutrition apps in tracking saturated fats and cholesterol across different nations remains underexplored.</p><p><strong>Objective: </strong>This study aimed to examine the reliability and consistency of nutrition apps focusing on saturated fat and cholesterol intake across different national contexts. The study focused on 3 key concerns: data omission, inconsistency (variability) of saturated fat and cholesterol values within an app, and the reliability of commercial apps across different national contexts.</p><p><strong>Methods: </strong>Nutrient data from 4 consumer-grade apps (COFIT, MyFitnessPal-Chinese, MyFitnessPal-English, and LoseIt!) and an academic app (Formosa FoodApp) were compared against 2 national reference databases (US Department of Agriculture [USDA]-Food and Nutrient Database for Dietary Studies [FNDDS] and Taiwan Food Composition Database [FCD]). Percentages of missing nutrients were recorded, and coefficients of variation were used to compute data inconsistencies. One-way ANOVAs were used to examine differences among apps, and paired 2-tailed t tests were used to compare the apps to national reference data. The reliability across different national contexts was investigated by comparing the Chinese and English versions of MyFitnessPal with the USDA-FNDDS and Taiwan FCD.</p><p><strong>Results: </strong>Across the 5 apps, 836 food codes from 42 items were analyzed. Four apps, including COFIT, MyFitnessPal-Chinese, MyFitnessPal-English, and LoseIt!, significantly underestimated saturated fats, with errors ranging from -13.8% to -40.3% (all P<.05). All apps underestimated cholesterol, with errors ranging from -26.3% to -60.3% (all P<.05). COFIT omitted 47% of saturated fat data, and MyFitnessPal-Chinese missed 62% of cholesterol data. The coefficients of variation of beef, chicken, and seafood ranged from 78% to 145%, from 74% to 112%, and from 97% to 124% across MyFitnessPal-Chinese, MyFitnessPal-English, and LoseIt!, respectively, indicating a high variability in saturated fats across different food groups. Similarly, cholesterol variability was consistently high in dairy (71%-118%) and prepackaged foods (84%-118%) across all selected apps. When examining the reliability of MyFitnessPal across different national contexts, errors in MyFitnessPal were consistent across different national FCDs (USDA-FNDSS and Taiwan FCD). Regardless of the FCDs used as a reference, these errors persisted to be statistically significant, indicating that the app's core database is the source of the problems rather than just mismatches or variances in external FCDs.</p><p><strong>Conclusions: </strong>The findings reveal substantial inaccuracies and inconsistencies in diet-tracking apps' reporting of saturated fats and cholesterol. These issues raise concerns for the effectiveness of using consumer-grade nutrition apps in cardiovascular disease prevention across different national contexts and within the apps themselves.</p>\",\"PeriodicalId\":14756,\"journal\":{\"name\":\"JMIR mHealth and uHealth\",\"volume\":\"12 \",\"pages\":\"e54509\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391091/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR mHealth and uHealth\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/54509\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR mHealth and uHealth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/54509","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Reliability Issues of Mobile Nutrition Apps for Cardiovascular Disease Prevention: Comparative Study.
Background: Controlling saturated fat and cholesterol intake is important for the prevention of cardiovascular diseases. Although the use of mobile diet-tracking apps has been increasing, the reliability of nutrition apps in tracking saturated fats and cholesterol across different nations remains underexplored.
Objective: This study aimed to examine the reliability and consistency of nutrition apps focusing on saturated fat and cholesterol intake across different national contexts. The study focused on 3 key concerns: data omission, inconsistency (variability) of saturated fat and cholesterol values within an app, and the reliability of commercial apps across different national contexts.
Methods: Nutrient data from 4 consumer-grade apps (COFIT, MyFitnessPal-Chinese, MyFitnessPal-English, and LoseIt!) and an academic app (Formosa FoodApp) were compared against 2 national reference databases (US Department of Agriculture [USDA]-Food and Nutrient Database for Dietary Studies [FNDDS] and Taiwan Food Composition Database [FCD]). Percentages of missing nutrients were recorded, and coefficients of variation were used to compute data inconsistencies. One-way ANOVAs were used to examine differences among apps, and paired 2-tailed t tests were used to compare the apps to national reference data. The reliability across different national contexts was investigated by comparing the Chinese and English versions of MyFitnessPal with the USDA-FNDDS and Taiwan FCD.
Results: Across the 5 apps, 836 food codes from 42 items were analyzed. Four apps, including COFIT, MyFitnessPal-Chinese, MyFitnessPal-English, and LoseIt!, significantly underestimated saturated fats, with errors ranging from -13.8% to -40.3% (all P<.05). All apps underestimated cholesterol, with errors ranging from -26.3% to -60.3% (all P<.05). COFIT omitted 47% of saturated fat data, and MyFitnessPal-Chinese missed 62% of cholesterol data. The coefficients of variation of beef, chicken, and seafood ranged from 78% to 145%, from 74% to 112%, and from 97% to 124% across MyFitnessPal-Chinese, MyFitnessPal-English, and LoseIt!, respectively, indicating a high variability in saturated fats across different food groups. Similarly, cholesterol variability was consistently high in dairy (71%-118%) and prepackaged foods (84%-118%) across all selected apps. When examining the reliability of MyFitnessPal across different national contexts, errors in MyFitnessPal were consistent across different national FCDs (USDA-FNDSS and Taiwan FCD). Regardless of the FCDs used as a reference, these errors persisted to be statistically significant, indicating that the app's core database is the source of the problems rather than just mismatches or variances in external FCDs.
Conclusions: The findings reveal substantial inaccuracies and inconsistencies in diet-tracking apps' reporting of saturated fats and cholesterol. These issues raise concerns for the effectiveness of using consumer-grade nutrition apps in cardiovascular disease prevention across different national contexts and within the apps themselves.
期刊介绍:
JMIR mHealth and uHealth (JMU, ISSN 2291-5222) is a spin-off journal of JMIR, the leading eHealth journal (Impact Factor 2016: 5.175). JMIR mHealth and uHealth is indexed in PubMed, PubMed Central, and Science Citation Index Expanded (SCIE), and in June 2017 received a stunning inaugural Impact Factor of 4.636.
The journal focusses on health and biomedical applications in mobile and tablet computing, pervasive and ubiquitous computing, wearable computing and domotics.
JMIR mHealth and uHealth publishes since 2013 and was the first mhealth journal in Pubmed. It publishes even faster and has a broader scope with including papers which are more technical or more formative/developmental than what would be published in the Journal of Medical Internet Research.