Maria Mariana Sabino Gouveia, Maria Beatriz Augusto do Nascimento, Alessandre Carmo Crispim, Edmilson Rodrigues da Rocha, Maryssa Pontes Pinto Dos Santos, Edson de Souza Bento, Thiago Mendonça De Aquino, Pedro Balikian, Natália Almeida Rodrigues, Thays Ataide-Silva, Gustavo Gomes de Araujo, Filipe Antonio de Barros Sousa
{"title":"精英女足运动员的代谢组学分析:冠军赛季的尿液生物标志物。","authors":"Maria Mariana Sabino Gouveia, Maria Beatriz Augusto do Nascimento, Alessandre Carmo Crispim, Edmilson Rodrigues da Rocha, Maryssa Pontes Pinto Dos Santos, Edson de Souza Bento, Thiago Mendonça De Aquino, Pedro Balikian, Natália Almeida Rodrigues, Thays Ataide-Silva, Gustavo Gomes de Araujo, Filipe Antonio de Barros Sousa","doi":"10.1007/s11306-024-02164-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In soccer, most studies evaluate metabolic profile changes in male athletes, often using data from a single match. Given the current landscape of women's soccer and the effects of biological sex on the physiological response and adaptation to exercise, more studies targeting female athletes and analyzing pre- and post-game moments throughout the season are necessary.</p><p><strong>Objectives: </strong>To describe the metabolomics profile of female soccer athletes from an elite team in Brazil. The study observed the separation of groups in three pre- and post-game moments and identified the discriminating metabolites.</p><p><strong>Methods: </strong>The study included 14 female soccer athletes. Urine samples were collected and analyzed using Nuclear Magnetic Resonance in pre-game and immediate post-game moments over three national championship games. The metabolomics data were then used to generate OPLS-DA and VIP plots.</p><p><strong>Results: </strong>Forty-three metabolites were identified in the samples. OPLS-DA analyses demonstrated a progressive separation between pre-post conditions, as supported by an increasing Q<sup>2</sup> value (0.534, 0.625, and 0.899 for games 1, 2 and 3, respectively) and the first component value (20.2% and 19.1% in games 1 and 2 vs. 29.9% in game 3). Eight out of the fifteen most discriminating metabolites appeared consistently across the three games: glycine, formate, citrate, 3-hydroxyvalerate, glycolic acid, trimethylamine, urea, and dimethylglycine.</p><p><strong>Conclusion: </strong>The main difference between the three games was the increasing separation between groups throughout the championship. Since the higher VIP-scores metabolites are linked to energy and protein metabolism, this separation may be attributed several factors, one being the accumulation of fatigue.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolomic profiling of elite female soccer players: urinary biomarkers over a championship season.\",\"authors\":\"Maria Mariana Sabino Gouveia, Maria Beatriz Augusto do Nascimento, Alessandre Carmo Crispim, Edmilson Rodrigues da Rocha, Maryssa Pontes Pinto Dos Santos, Edson de Souza Bento, Thiago Mendonça De Aquino, Pedro Balikian, Natália Almeida Rodrigues, Thays Ataide-Silva, Gustavo Gomes de Araujo, Filipe Antonio de Barros Sousa\",\"doi\":\"10.1007/s11306-024-02164-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>In soccer, most studies evaluate metabolic profile changes in male athletes, often using data from a single match. Given the current landscape of women's soccer and the effects of biological sex on the physiological response and adaptation to exercise, more studies targeting female athletes and analyzing pre- and post-game moments throughout the season are necessary.</p><p><strong>Objectives: </strong>To describe the metabolomics profile of female soccer athletes from an elite team in Brazil. The study observed the separation of groups in three pre- and post-game moments and identified the discriminating metabolites.</p><p><strong>Methods: </strong>The study included 14 female soccer athletes. Urine samples were collected and analyzed using Nuclear Magnetic Resonance in pre-game and immediate post-game moments over three national championship games. The metabolomics data were then used to generate OPLS-DA and VIP plots.</p><p><strong>Results: </strong>Forty-three metabolites were identified in the samples. OPLS-DA analyses demonstrated a progressive separation between pre-post conditions, as supported by an increasing Q<sup>2</sup> value (0.534, 0.625, and 0.899 for games 1, 2 and 3, respectively) and the first component value (20.2% and 19.1% in games 1 and 2 vs. 29.9% in game 3). Eight out of the fifteen most discriminating metabolites appeared consistently across the three games: glycine, formate, citrate, 3-hydroxyvalerate, glycolic acid, trimethylamine, urea, and dimethylglycine.</p><p><strong>Conclusion: </strong>The main difference between the three games was the increasing separation between groups throughout the championship. Since the higher VIP-scores metabolites are linked to energy and protein metabolism, this separation may be attributed several factors, one being the accumulation of fatigue.</p>\",\"PeriodicalId\":18506,\"journal\":{\"name\":\"Metabolomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11306-024-02164-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02164-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Metabolomic profiling of elite female soccer players: urinary biomarkers over a championship season.
Introduction: In soccer, most studies evaluate metabolic profile changes in male athletes, often using data from a single match. Given the current landscape of women's soccer and the effects of biological sex on the physiological response and adaptation to exercise, more studies targeting female athletes and analyzing pre- and post-game moments throughout the season are necessary.
Objectives: To describe the metabolomics profile of female soccer athletes from an elite team in Brazil. The study observed the separation of groups in three pre- and post-game moments and identified the discriminating metabolites.
Methods: The study included 14 female soccer athletes. Urine samples were collected and analyzed using Nuclear Magnetic Resonance in pre-game and immediate post-game moments over three national championship games. The metabolomics data were then used to generate OPLS-DA and VIP plots.
Results: Forty-three metabolites were identified in the samples. OPLS-DA analyses demonstrated a progressive separation between pre-post conditions, as supported by an increasing Q2 value (0.534, 0.625, and 0.899 for games 1, 2 and 3, respectively) and the first component value (20.2% and 19.1% in games 1 and 2 vs. 29.9% in game 3). Eight out of the fifteen most discriminating metabolites appeared consistently across the three games: glycine, formate, citrate, 3-hydroxyvalerate, glycolic acid, trimethylamine, urea, and dimethylglycine.
Conclusion: The main difference between the three games was the increasing separation between groups throughout the championship. Since the higher VIP-scores metabolites are linked to energy and protein metabolism, this separation may be attributed several factors, one being the accumulation of fatigue.
期刊介绍:
Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to:
metabolomic applications within man, including pre-clinical and clinical
pharmacometabolomics for precision medicine
metabolic profiling and fingerprinting
metabolite target analysis
metabolomic applications within animals, plants and microbes
transcriptomics and proteomics in systems biology
Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.