Soongwon Cho, Samy M. Shaban, Ruihao Song, Haohui Zhang, Dasom Yang, Min-Jae Kim, Yirui Xiong, Xiuyuan Li, Kenneth Madsen, Sarena Wapnick, Shifan Zhang, Ziyu Chen, Jiwon Kim, Gianna Guinto, Michelle Li, Minkyu Lee, Ravi F. Nuxoll, Shaghayegh Shajari, Jin Wang, Seongeun Son, Jihoon Shin, Alexander J. Aranyosi, Donald E. Wright, Tae-il Kim, Roozbeh Ghaffari, Yonggang Huang, Dong-Hwan Kim, John A. Rogers
{"title":"皮肤界面微流控平台支持人体运动过程中的动态汗液生化分析。","authors":"Soongwon Cho, Samy M. Shaban, Ruihao Song, Haohui Zhang, Dasom Yang, Min-Jae Kim, Yirui Xiong, Xiuyuan Li, Kenneth Madsen, Sarena Wapnick, Shifan Zhang, Ziyu Chen, Jiwon Kim, Gianna Guinto, Michelle Li, Minkyu Lee, Ravi F. Nuxoll, Shaghayegh Shajari, Jin Wang, Seongeun Son, Jihoon Shin, Alexander J. Aranyosi, Donald E. Wright, Tae-il Kim, Roozbeh Ghaffari, Yonggang Huang, Dong-Hwan Kim, John A. Rogers","doi":"10.1126/scitranslmed.ado5366","DOIUrl":null,"url":null,"abstract":"<div >Blood lactate concentration is an established circulating biomarker for measuring muscle acidity and can be evaluated for monitoring endurance, training routines, or athletic performance. Sweat is an alternative biofluid that may serve similar purposes and offers the advantage of noninvasive collection and continuous monitoring. The relationship between blood lactate and dynamic sweat biochemistry for wearable engineering applications in physiological fitness remains poorly defined. Here, we developed a microfluidic wearable band with an integrated colorimetric timer and biochemical assays that temporally captures sweat and measures pH and lactate concentration. A colorimetric silver nanoplasmonic assay was used to measure the concentration of lactate, and dye-conjugated SiO<sub>2</sub> nanoparticle–agarose composite materials supported dynamic pH analysis. We evaluated these sweat biomarkers in relation to blood lactate in human participant studies during cycling exercise of varying intensity. Iontophoresis-generated sweat pH from regions of actively working muscles decreased with increasing heart rate during exercise and was negatively correlated with blood lactate concentration. In contrast, sweat pH from nonworking muscles did not correlate with blood lactate concentration. Changes in sweat pH and blood lactate were observed in participants who did not regularly exercise but not in individuals who regularly exercised, suggesting a relationship to physical fitness and supporting further development for noninvasive, biochemical fitness evaluations.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 763","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A skin-interfaced microfluidic platform supports dynamic sweat biochemical analysis during human exercise\",\"authors\":\"Soongwon Cho, Samy M. Shaban, Ruihao Song, Haohui Zhang, Dasom Yang, Min-Jae Kim, Yirui Xiong, Xiuyuan Li, Kenneth Madsen, Sarena Wapnick, Shifan Zhang, Ziyu Chen, Jiwon Kim, Gianna Guinto, Michelle Li, Minkyu Lee, Ravi F. Nuxoll, Shaghayegh Shajari, Jin Wang, Seongeun Son, Jihoon Shin, Alexander J. Aranyosi, Donald E. Wright, Tae-il Kim, Roozbeh Ghaffari, Yonggang Huang, Dong-Hwan Kim, John A. Rogers\",\"doi\":\"10.1126/scitranslmed.ado5366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Blood lactate concentration is an established circulating biomarker for measuring muscle acidity and can be evaluated for monitoring endurance, training routines, or athletic performance. Sweat is an alternative biofluid that may serve similar purposes and offers the advantage of noninvasive collection and continuous monitoring. The relationship between blood lactate and dynamic sweat biochemistry for wearable engineering applications in physiological fitness remains poorly defined. Here, we developed a microfluidic wearable band with an integrated colorimetric timer and biochemical assays that temporally captures sweat and measures pH and lactate concentration. A colorimetric silver nanoplasmonic assay was used to measure the concentration of lactate, and dye-conjugated SiO<sub>2</sub> nanoparticle–agarose composite materials supported dynamic pH analysis. We evaluated these sweat biomarkers in relation to blood lactate in human participant studies during cycling exercise of varying intensity. Iontophoresis-generated sweat pH from regions of actively working muscles decreased with increasing heart rate during exercise and was negatively correlated with blood lactate concentration. In contrast, sweat pH from nonworking muscles did not correlate with blood lactate concentration. Changes in sweat pH and blood lactate were observed in participants who did not regularly exercise but not in individuals who regularly exercised, suggesting a relationship to physical fitness and supporting further development for noninvasive, biochemical fitness evaluations.</div>\",\"PeriodicalId\":21580,\"journal\":{\"name\":\"Science Translational Medicine\",\"volume\":\"16 763\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scitranslmed.ado5366\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.ado5366","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A skin-interfaced microfluidic platform supports dynamic sweat biochemical analysis during human exercise
Blood lactate concentration is an established circulating biomarker for measuring muscle acidity and can be evaluated for monitoring endurance, training routines, or athletic performance. Sweat is an alternative biofluid that may serve similar purposes and offers the advantage of noninvasive collection and continuous monitoring. The relationship between blood lactate and dynamic sweat biochemistry for wearable engineering applications in physiological fitness remains poorly defined. Here, we developed a microfluidic wearable band with an integrated colorimetric timer and biochemical assays that temporally captures sweat and measures pH and lactate concentration. A colorimetric silver nanoplasmonic assay was used to measure the concentration of lactate, and dye-conjugated SiO2 nanoparticle–agarose composite materials supported dynamic pH analysis. We evaluated these sweat biomarkers in relation to blood lactate in human participant studies during cycling exercise of varying intensity. Iontophoresis-generated sweat pH from regions of actively working muscles decreased with increasing heart rate during exercise and was negatively correlated with blood lactate concentration. In contrast, sweat pH from nonworking muscles did not correlate with blood lactate concentration. Changes in sweat pH and blood lactate were observed in participants who did not regularly exercise but not in individuals who regularly exercised, suggesting a relationship to physical fitness and supporting further development for noninvasive, biochemical fitness evaluations.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.