H Hasegawa, M R Argall, N Aunai, R Bandyopadhyay, N Bessho, I J Cohen, R E Denton, J C Dorelli, J Egedal, S A Fuselier, P Garnier, V Génot, D B Graham, K J Hwang, Y V Khotyaintsev, D B Korovinskiy, B Lavraud, Q Lenouvel, T C Li, Y-H Liu, B Michotte de Welle, T K M Nakamura, D S Payne, S M Petrinec, Y Qi, A C Rager, P H Reiff, J M Schroeder, J R Shuster, M I Sitnov, G K Stephens, M Swisdak, A M Tian, R B Torbert, K J Trattner, S Zenitani
{"title":"分析现场磁性再连接观测数据的先进方法。","authors":"H Hasegawa, M R Argall, N Aunai, R Bandyopadhyay, N Bessho, I J Cohen, R E Denton, J C Dorelli, J Egedal, S A Fuselier, P Garnier, V Génot, D B Graham, K J Hwang, Y V Khotyaintsev, D B Korovinskiy, B Lavraud, Q Lenouvel, T C Li, Y-H Liu, B Michotte de Welle, T K M Nakamura, D S Payne, S M Petrinec, Y Qi, A C Rager, P H Reiff, J M Schroeder, J R Shuster, M I Sitnov, G K Stephens, M Swisdak, A M Tian, R B Torbert, K J Trattner, S Zenitani","doi":"10.1007/s11214-024-01095-w","DOIUrl":null,"url":null,"abstract":"<p><p>There is ample evidence for magnetic reconnection in the solar system, but it is a nontrivial task to visualize, to determine the proper approaches and frames to study, and in turn to elucidate the physical processes at work in reconnection regions from in-situ measurements of plasma particles and electromagnetic fields. Here an overview is given of a variety of single- and multi-spacecraft data analysis techniques that are key to revealing the context of in-situ observations of magnetic reconnection in space and for detecting and analyzing the diffusion regions where ions and/or electrons are demagnetized. We focus on recent advances in the era of the Magnetospheric Multiscale mission, which has made electron-scale, multi-point measurements of magnetic reconnection in and around Earth's magnetosphere.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369046/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced Methods for Analyzing in-Situ Observations of Magnetic Reconnection.\",\"authors\":\"H Hasegawa, M R Argall, N Aunai, R Bandyopadhyay, N Bessho, I J Cohen, R E Denton, J C Dorelli, J Egedal, S A Fuselier, P Garnier, V Génot, D B Graham, K J Hwang, Y V Khotyaintsev, D B Korovinskiy, B Lavraud, Q Lenouvel, T C Li, Y-H Liu, B Michotte de Welle, T K M Nakamura, D S Payne, S M Petrinec, Y Qi, A C Rager, P H Reiff, J M Schroeder, J R Shuster, M I Sitnov, G K Stephens, M Swisdak, A M Tian, R B Torbert, K J Trattner, S Zenitani\",\"doi\":\"10.1007/s11214-024-01095-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is ample evidence for magnetic reconnection in the solar system, but it is a nontrivial task to visualize, to determine the proper approaches and frames to study, and in turn to elucidate the physical processes at work in reconnection regions from in-situ measurements of plasma particles and electromagnetic fields. Here an overview is given of a variety of single- and multi-spacecraft data analysis techniques that are key to revealing the context of in-situ observations of magnetic reconnection in space and for detecting and analyzing the diffusion regions where ions and/or electrons are demagnetized. We focus on recent advances in the era of the Magnetospheric Multiscale mission, which has made electron-scale, multi-point measurements of magnetic reconnection in and around Earth's magnetosphere.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369046/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11214-024-01095-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-024-01095-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Advanced Methods for Analyzing in-Situ Observations of Magnetic Reconnection.
There is ample evidence for magnetic reconnection in the solar system, but it is a nontrivial task to visualize, to determine the proper approaches and frames to study, and in turn to elucidate the physical processes at work in reconnection regions from in-situ measurements of plasma particles and electromagnetic fields. Here an overview is given of a variety of single- and multi-spacecraft data analysis techniques that are key to revealing the context of in-situ observations of magnetic reconnection in space and for detecting and analyzing the diffusion regions where ions and/or electrons are demagnetized. We focus on recent advances in the era of the Magnetospheric Multiscale mission, which has made electron-scale, multi-point measurements of magnetic reconnection in and around Earth's magnetosphere.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.