{"title":"利用电子健康记录数据识别枪支伤害风险的机器学习预测模型。","authors":"Hui Zhou, Claudia Nau, Fagen Xie, Richard Contreras, Deborah Ling Grant, Sonya Negriff, Margo Sidell, Corinna Koebnick, Rulin Hechter","doi":"10.1093/jamia/ocae222","DOIUrl":null,"url":null,"abstract":"<p><strong>Importance: </strong>Firearm injuries constitute a public health crisis. At the healthcare encounter level, they are, however, rare events.</p><p><strong>Objective: </strong>To develop a predictive model to identify healthcare encounters of adult patients at increased risk of firearm injury to target screening and prevention efforts.</p><p><strong>Materials and methods: </strong>Electronic health records data from Kaiser Permanente Southern California (KPSC) were used to identify healthcare encounters of patients with fatal and non-fatal firearm injuries, as well as healthcare visits of a sample of matched controls during 2010-2018. More than 170 predictors, including diagnoses, healthcare utilization, and neighborhood characteristics were identified. Extreme gradient boosting (XGBoost) and a split sample design were used to train and test a model that predicted risk of firearm injury within the next 3 years at the encounter level.</p><p><strong>Results: </strong>A total of 3879 firearm injuries were identified among 5 288 529 KPSC adult members. Prevalence at the healthcare encounter level was 0.01%. The 15 most important predictors included demographics, healthcare utilization, and neighborhood-level socio-economic factors. The sensitivity and specificity of the final model were 0.83 and 0.56, respectively. A very high-risk group (top 1% of predicted risk) yielded a positive predictive value of 0.14% and sensitivity of 13%. This high-risk group potentially reduces screening burden by a factor of 11.7, compared to universal screening. Results for alternative probability cutoffs are presented.</p><p><strong>Discussion: </strong>Our model can support more targeted screening in healthcare settings, resulting in improved efficiency of firearm injury risk assessment and prevention efforts.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413429/pdf/","citationCount":"0","resultStr":"{\"title\":\"A machine-learning prediction model to identify risk of firearm injury using electronic health records data.\",\"authors\":\"Hui Zhou, Claudia Nau, Fagen Xie, Richard Contreras, Deborah Ling Grant, Sonya Negriff, Margo Sidell, Corinna Koebnick, Rulin Hechter\",\"doi\":\"10.1093/jamia/ocae222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Importance: </strong>Firearm injuries constitute a public health crisis. At the healthcare encounter level, they are, however, rare events.</p><p><strong>Objective: </strong>To develop a predictive model to identify healthcare encounters of adult patients at increased risk of firearm injury to target screening and prevention efforts.</p><p><strong>Materials and methods: </strong>Electronic health records data from Kaiser Permanente Southern California (KPSC) were used to identify healthcare encounters of patients with fatal and non-fatal firearm injuries, as well as healthcare visits of a sample of matched controls during 2010-2018. More than 170 predictors, including diagnoses, healthcare utilization, and neighborhood characteristics were identified. Extreme gradient boosting (XGBoost) and a split sample design were used to train and test a model that predicted risk of firearm injury within the next 3 years at the encounter level.</p><p><strong>Results: </strong>A total of 3879 firearm injuries were identified among 5 288 529 KPSC adult members. Prevalence at the healthcare encounter level was 0.01%. The 15 most important predictors included demographics, healthcare utilization, and neighborhood-level socio-economic factors. The sensitivity and specificity of the final model were 0.83 and 0.56, respectively. A very high-risk group (top 1% of predicted risk) yielded a positive predictive value of 0.14% and sensitivity of 13%. This high-risk group potentially reduces screening burden by a factor of 11.7, compared to universal screening. Results for alternative probability cutoffs are presented.</p><p><strong>Discussion: </strong>Our model can support more targeted screening in healthcare settings, resulting in improved efficiency of firearm injury risk assessment and prevention efforts.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413429/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocae222\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae222","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A machine-learning prediction model to identify risk of firearm injury using electronic health records data.
Importance: Firearm injuries constitute a public health crisis. At the healthcare encounter level, they are, however, rare events.
Objective: To develop a predictive model to identify healthcare encounters of adult patients at increased risk of firearm injury to target screening and prevention efforts.
Materials and methods: Electronic health records data from Kaiser Permanente Southern California (KPSC) were used to identify healthcare encounters of patients with fatal and non-fatal firearm injuries, as well as healthcare visits of a sample of matched controls during 2010-2018. More than 170 predictors, including diagnoses, healthcare utilization, and neighborhood characteristics were identified. Extreme gradient boosting (XGBoost) and a split sample design were used to train and test a model that predicted risk of firearm injury within the next 3 years at the encounter level.
Results: A total of 3879 firearm injuries were identified among 5 288 529 KPSC adult members. Prevalence at the healthcare encounter level was 0.01%. The 15 most important predictors included demographics, healthcare utilization, and neighborhood-level socio-economic factors. The sensitivity and specificity of the final model were 0.83 and 0.56, respectively. A very high-risk group (top 1% of predicted risk) yielded a positive predictive value of 0.14% and sensitivity of 13%. This high-risk group potentially reduces screening burden by a factor of 11.7, compared to universal screening. Results for alternative probability cutoffs are presented.
Discussion: Our model can support more targeted screening in healthcare settings, resulting in improved efficiency of firearm injury risk assessment and prevention efforts.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.