{"title":"临床代谢组学研究的再现性危机","authors":"","doi":"10.1016/j.trac.2024.117918","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer is a leading cause of world-wide death and a major subject of clinical studies focused on the identification of new diagnostic tools. An in-depth meta-analysis of 244 clinical metabolomics studies of human serum samples highlights a reproducibility crisis. A total of 2,206 unique metabolites were reported as statistically significant across the 244 studies, but 72% (1,582) of these metabolites were identified by only one study. Further analysis shows a random disparate disagreement in reported directions of metabolite concentration changes when detected by multiple studies. Statistical models revealed that 1,867 of the 2,206 metabolites (85%) are simply statistical noise. Only 3–12% of these metabolites reach the threshold of statistical significance for a specific cancer type. Our findings demonstrate the absence of a detectable metabolic response to cancer and provide evidence of a serious need by the metabolomics community to establish widely accepted best practices to improve future outcomes.</p></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":11.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reproducibility crisis for clinical metabolomics studies\",\"authors\":\"\",\"doi\":\"10.1016/j.trac.2024.117918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer is a leading cause of world-wide death and a major subject of clinical studies focused on the identification of new diagnostic tools. An in-depth meta-analysis of 244 clinical metabolomics studies of human serum samples highlights a reproducibility crisis. A total of 2,206 unique metabolites were reported as statistically significant across the 244 studies, but 72% (1,582) of these metabolites were identified by only one study. Further analysis shows a random disparate disagreement in reported directions of metabolite concentration changes when detected by multiple studies. Statistical models revealed that 1,867 of the 2,206 metabolites (85%) are simply statistical noise. Only 3–12% of these metabolites reach the threshold of statistical significance for a specific cancer type. Our findings demonstrate the absence of a detectable metabolic response to cancer and provide evidence of a serious need by the metabolomics community to establish widely accepted best practices to improve future outcomes.</p></div>\",\"PeriodicalId\":439,\"journal\":{\"name\":\"Trends in Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Analytical Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165993624004011\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165993624004011","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A reproducibility crisis for clinical metabolomics studies
Cancer is a leading cause of world-wide death and a major subject of clinical studies focused on the identification of new diagnostic tools. An in-depth meta-analysis of 244 clinical metabolomics studies of human serum samples highlights a reproducibility crisis. A total of 2,206 unique metabolites were reported as statistically significant across the 244 studies, but 72% (1,582) of these metabolites were identified by only one study. Further analysis shows a random disparate disagreement in reported directions of metabolite concentration changes when detected by multiple studies. Statistical models revealed that 1,867 of the 2,206 metabolites (85%) are simply statistical noise. Only 3–12% of these metabolites reach the threshold of statistical significance for a specific cancer type. Our findings demonstrate the absence of a detectable metabolic response to cancer and provide evidence of a serious need by the metabolomics community to establish widely accepted best practices to improve future outcomes.
期刊介绍:
TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.