Achmad Nasyori , Iswadi I. Patunrengi , Fatimah Arofiati Noor
{"title":"研究利用新型天然光敏剂提高染料敏化太阳能电池(DSSC)的性能","authors":"Achmad Nasyori , Iswadi I. Patunrengi , Fatimah Arofiati Noor","doi":"10.1016/j.jksus.2024.103423","DOIUrl":null,"url":null,"abstract":"<div><p>Dye-sensitized solar cells (DSSCs) offer a promising route for sustainable energy conversion, with natural photosensitizers emerging as attractive alternatives to conventional synthetic dyes due to their abundant resources, cost-effectiveness, and eco-friendly materials. However, the efficiency of DSSC utilizing natural photosensitizer remains low. In this study, we investigate the utilization of novel natural photosensitizers extracted from gambier leaves, gambier branches, cinnamon, and petiole of tectona leaves, which contain flavonoids/tannins, chlorophyll, and anthocyanins, aiming to achieve high-performance DSSCs. Five different solvents—ethanol, isopropanol, distilled water, methanol, and Zamzam water—are explored to optimize the extraction process of the natural dyes. The doctor blade technique is employed to coat TiO<sub>2</sub> nanomaterials onto ITO glass substrates. UV–Vis spectrophotometry and FTIR spectroscopy are used to characterize the optical properties and structural composition of the dyes, revealing that flavonoid/tannin groups are the primary compounds responsible for light harvesting. The DSSC performance is evaluated under a 30 W lamp, adjusted to light intensity of 10 mW/cm<sup>2</sup>. As a result, the DSSCs using gambier leaf extract as photosensitizer demonstrate the highest recorded efficiency of 4.71 %, with a Jsc of 2.95 mAcm<sup>−2</sup> and a Voc of 0.64 V. These findings contribute to advancing DSSC technology by leveraging the potential of natural photosensitizers for sustainable energy conversion applications.</p></div>","PeriodicalId":16205,"journal":{"name":"Journal of King Saud University - Science","volume":"36 9","pages":"Article 103423"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1018364724003355/pdfft?md5=4e99acce24b70fe4a99797f224f57aee&pid=1-s2.0-S1018364724003355-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigate the utilization of novel natural photosensitizers for the performance of dye-sensitized solar cells (DSSCs)\",\"authors\":\"Achmad Nasyori , Iswadi I. Patunrengi , Fatimah Arofiati Noor\",\"doi\":\"10.1016/j.jksus.2024.103423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dye-sensitized solar cells (DSSCs) offer a promising route for sustainable energy conversion, with natural photosensitizers emerging as attractive alternatives to conventional synthetic dyes due to their abundant resources, cost-effectiveness, and eco-friendly materials. However, the efficiency of DSSC utilizing natural photosensitizer remains low. In this study, we investigate the utilization of novel natural photosensitizers extracted from gambier leaves, gambier branches, cinnamon, and petiole of tectona leaves, which contain flavonoids/tannins, chlorophyll, and anthocyanins, aiming to achieve high-performance DSSCs. Five different solvents—ethanol, isopropanol, distilled water, methanol, and Zamzam water—are explored to optimize the extraction process of the natural dyes. The doctor blade technique is employed to coat TiO<sub>2</sub> nanomaterials onto ITO glass substrates. UV–Vis spectrophotometry and FTIR spectroscopy are used to characterize the optical properties and structural composition of the dyes, revealing that flavonoid/tannin groups are the primary compounds responsible for light harvesting. The DSSC performance is evaluated under a 30 W lamp, adjusted to light intensity of 10 mW/cm<sup>2</sup>. As a result, the DSSCs using gambier leaf extract as photosensitizer demonstrate the highest recorded efficiency of 4.71 %, with a Jsc of 2.95 mAcm<sup>−2</sup> and a Voc of 0.64 V. These findings contribute to advancing DSSC technology by leveraging the potential of natural photosensitizers for sustainable energy conversion applications.</p></div>\",\"PeriodicalId\":16205,\"journal\":{\"name\":\"Journal of King Saud University - Science\",\"volume\":\"36 9\",\"pages\":\"Article 103423\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1018364724003355/pdfft?md5=4e99acce24b70fe4a99797f224f57aee&pid=1-s2.0-S1018364724003355-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University - Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1018364724003355\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University - Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1018364724003355","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Investigate the utilization of novel natural photosensitizers for the performance of dye-sensitized solar cells (DSSCs)
Dye-sensitized solar cells (DSSCs) offer a promising route for sustainable energy conversion, with natural photosensitizers emerging as attractive alternatives to conventional synthetic dyes due to their abundant resources, cost-effectiveness, and eco-friendly materials. However, the efficiency of DSSC utilizing natural photosensitizer remains low. In this study, we investigate the utilization of novel natural photosensitizers extracted from gambier leaves, gambier branches, cinnamon, and petiole of tectona leaves, which contain flavonoids/tannins, chlorophyll, and anthocyanins, aiming to achieve high-performance DSSCs. Five different solvents—ethanol, isopropanol, distilled water, methanol, and Zamzam water—are explored to optimize the extraction process of the natural dyes. The doctor blade technique is employed to coat TiO2 nanomaterials onto ITO glass substrates. UV–Vis spectrophotometry and FTIR spectroscopy are used to characterize the optical properties and structural composition of the dyes, revealing that flavonoid/tannin groups are the primary compounds responsible for light harvesting. The DSSC performance is evaluated under a 30 W lamp, adjusted to light intensity of 10 mW/cm2. As a result, the DSSCs using gambier leaf extract as photosensitizer demonstrate the highest recorded efficiency of 4.71 %, with a Jsc of 2.95 mAcm−2 and a Voc of 0.64 V. These findings contribute to advancing DSSC technology by leveraging the potential of natural photosensitizers for sustainable energy conversion applications.
期刊介绍:
Journal of King Saud University – Science is an official refereed publication of King Saud University and the publishing services is provided by Elsevier. It publishes peer-reviewed research articles in the fields of physics, astronomy, mathematics, statistics, chemistry, biochemistry, earth sciences, life and environmental sciences on the basis of scientific originality and interdisciplinary interest. It is devoted primarily to research papers but short communications, reviews and book reviews are also included. The editorial board and associated editors, composed of prominent scientists from around the world, are representative of the disciplines covered by the journal.