Kateryna Ulybkina , Kateryna Kamyshnykova , Alena Klimová , Tatiana Pelachová , Andrea Školáková , Jan Pinc
{"title":"旋转压接 Al0.35CoCrFeNi 复合浓缩合金的热稳定性和晶粒生长动力学","authors":"Kateryna Ulybkina , Kateryna Kamyshnykova , Alena Klimová , Tatiana Pelachová , Andrea Školáková , Jan Pinc","doi":"10.1016/j.intermet.2024.108456","DOIUrl":null,"url":null,"abstract":"<div><p>A complex concentrated alloy (CCA) with a nominal composition of Al<sub>0.35</sub>CoCrFeNi (mol.%) was prepared by vacuum induction melting and tilt casting. The microstructure of the alloy in the as-cast state consists of columnar dendritic grains. The ingots were solution annealed, rotary swaged, and heat treated to obtain a uniform fine-grain structure. To study the behavior of recrystallization and grain growth, heat treatment was carried out at temperatures from 1150 °C to 1300 °C and holding times up to 480 min. The resulting microstructures were analyzed by LM, SEM, TEM, EBSD, and XRD methods followed by a comparison with the results of hardness measurements. The alloy has a thermally stable single-phase face-centered cubic (FCC) structure in the studied temperature range. The grain growth kinetics were analyzed using classical models, and the activation energy was estimated to be ∼458 kJ mol<sup>−1</sup> using an Arrhenius-type equation. The greatest resistance to grain growth was observed at a temperature of 1150 °C. Hardness tests demonstrated an almost double increase in hardness after swaging and a sharp drop during the following heat treatment due to the onset of recrystallization. The Hall-Petch hardening coefficient was calculated to be ∼277.5 HV μm<sup>−1/2</sup>.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108456"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal stability and grain growth kinetics in rotary swaged Al0.35CoCrFeNi complex concentrated alloy\",\"authors\":\"Kateryna Ulybkina , Kateryna Kamyshnykova , Alena Klimová , Tatiana Pelachová , Andrea Školáková , Jan Pinc\",\"doi\":\"10.1016/j.intermet.2024.108456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A complex concentrated alloy (CCA) with a nominal composition of Al<sub>0.35</sub>CoCrFeNi (mol.%) was prepared by vacuum induction melting and tilt casting. The microstructure of the alloy in the as-cast state consists of columnar dendritic grains. The ingots were solution annealed, rotary swaged, and heat treated to obtain a uniform fine-grain structure. To study the behavior of recrystallization and grain growth, heat treatment was carried out at temperatures from 1150 °C to 1300 °C and holding times up to 480 min. The resulting microstructures were analyzed by LM, SEM, TEM, EBSD, and XRD methods followed by a comparison with the results of hardness measurements. The alloy has a thermally stable single-phase face-centered cubic (FCC) structure in the studied temperature range. The grain growth kinetics were analyzed using classical models, and the activation energy was estimated to be ∼458 kJ mol<sup>−1</sup> using an Arrhenius-type equation. The greatest resistance to grain growth was observed at a temperature of 1150 °C. Hardness tests demonstrated an almost double increase in hardness after swaging and a sharp drop during the following heat treatment due to the onset of recrystallization. The Hall-Petch hardening coefficient was calculated to be ∼277.5 HV μm<sup>−1/2</sup>.</p></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"175 \",\"pages\":\"Article 108456\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979524002759\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524002759","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Thermal stability and grain growth kinetics in rotary swaged Al0.35CoCrFeNi complex concentrated alloy
A complex concentrated alloy (CCA) with a nominal composition of Al0.35CoCrFeNi (mol.%) was prepared by vacuum induction melting and tilt casting. The microstructure of the alloy in the as-cast state consists of columnar dendritic grains. The ingots were solution annealed, rotary swaged, and heat treated to obtain a uniform fine-grain structure. To study the behavior of recrystallization and grain growth, heat treatment was carried out at temperatures from 1150 °C to 1300 °C and holding times up to 480 min. The resulting microstructures were analyzed by LM, SEM, TEM, EBSD, and XRD methods followed by a comparison with the results of hardness measurements. The alloy has a thermally stable single-phase face-centered cubic (FCC) structure in the studied temperature range. The grain growth kinetics were analyzed using classical models, and the activation energy was estimated to be ∼458 kJ mol−1 using an Arrhenius-type equation. The greatest resistance to grain growth was observed at a temperature of 1150 °C. Hardness tests demonstrated an almost double increase in hardness after swaging and a sharp drop during the following heat treatment due to the onset of recrystallization. The Hall-Petch hardening coefficient was calculated to be ∼277.5 HV μm−1/2.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.