用于水下移动传感器网络前沿检测的负载自适应 MAC 协议

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc Networks Pub Date : 2024-08-31 DOI:10.1016/j.adhoc.2024.103641
{"title":"用于水下移动传感器网络前沿检测的负载自适应 MAC 协议","authors":"","doi":"10.1016/j.adhoc.2024.103641","DOIUrl":null,"url":null,"abstract":"<div><p>This work proposes a load-adaptive Medium Access Control (MAC) protocol for the frontier/boundary detection application of underwater phenomena using Underwater Mobile Sensor Network (UWMSN). A leader-follower architecture of a swarm of underwater vehicles is proposed here. Autonomous Underwater Vehicles (AUVs) traverse a random mobility pattern beneath one Autonomous Surface Vehicle (ASV) (leader) in the proposed network. ASV has to guide multiple-follower AUVs in the event of interest. The vehicular swarm aims to explore the frontiers in the event to build the map. Load-adaptive MAC protocol is therefore proposed and implemented in this hybrid multi-vehicular network to ensure seamless vehicular communications. The ASV has navigational capabilities to aid the AUVs in navigation and data collection. The proposed MAC protocol can adjust the dynamic mobility and load in the network. The protocol aims to provide dynamic Time Division Multiple Access (TDMA) slots for the AUVs wirelessly linked in the vicinity of the ASV. These slots are used for ranging/navigation and data transmission. Additional urgent data from any AUVs can be transmitted in open Carrier Sense Multiple Access (CSMA) protocol following the TDMA duration. Results have been generated by comparing protocols like CSMA, ALOHA, and TDMA with the proposed Load-Adaptive MAC protocol. The protocols have been compared to the throughput vs number of nodes and throughput vs simulation time. It has been observed that the proposed MAC can perform better than ALOHA and CSMA protocols. Nevertheless, it can produce comparable results for TDMA protocol while supporting the dynamic mobility and load in the network meantime supporting urgent data transmission for nodes in demand.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load-adaptive MAC protocol for frontier detection in Underwater Mobile Sensor Network\",\"authors\":\"\",\"doi\":\"10.1016/j.adhoc.2024.103641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work proposes a load-adaptive Medium Access Control (MAC) protocol for the frontier/boundary detection application of underwater phenomena using Underwater Mobile Sensor Network (UWMSN). A leader-follower architecture of a swarm of underwater vehicles is proposed here. Autonomous Underwater Vehicles (AUVs) traverse a random mobility pattern beneath one Autonomous Surface Vehicle (ASV) (leader) in the proposed network. ASV has to guide multiple-follower AUVs in the event of interest. The vehicular swarm aims to explore the frontiers in the event to build the map. Load-adaptive MAC protocol is therefore proposed and implemented in this hybrid multi-vehicular network to ensure seamless vehicular communications. The ASV has navigational capabilities to aid the AUVs in navigation and data collection. The proposed MAC protocol can adjust the dynamic mobility and load in the network. The protocol aims to provide dynamic Time Division Multiple Access (TDMA) slots for the AUVs wirelessly linked in the vicinity of the ASV. These slots are used for ranging/navigation and data transmission. Additional urgent data from any AUVs can be transmitted in open Carrier Sense Multiple Access (CSMA) protocol following the TDMA duration. Results have been generated by comparing protocols like CSMA, ALOHA, and TDMA with the proposed Load-Adaptive MAC protocol. The protocols have been compared to the throughput vs number of nodes and throughput vs simulation time. It has been observed that the proposed MAC can perform better than ALOHA and CSMA protocols. Nevertheless, it can produce comparable results for TDMA protocol while supporting the dynamic mobility and load in the network meantime supporting urgent data transmission for nodes in demand.</p></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157087052400252X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157087052400252X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种负载自适应介质访问控制(MAC)协议,用于利用水下移动传感器网络(UWMSN)对水下现象进行前沿/边界探测。这里提出了一种水下航行器群的领导者-跟随者架构。在提议的网络中,自主水下航行器(AUV)在一个自主水面航行器(ASV)(领导者)的下方以随机移动模式行进。ASV 必须在感兴趣时引导多个跟随者 AUV。车群的目标是探索事件的前沿,以绘制地图。因此,提出了负载自适应 MAC 协议,并在这个混合多车辆网络中实施,以确保无缝车辆通信。ASV 具有导航能力,可帮助 AUV 进行导航和数据收集。所提出的 MAC 协议可以调整网络中的动态移动性和负载。该协议旨在为在 ASV 附近无线连接的 AUV 提供动态时分多址 (TDMA) 时隙。这些时隙用于响铃/导航和数据传输。在 TDMA 持续时间之后,任何 AUV 的其他紧急数据都可以通过开放的载波感应多路访问(CSMA)协议进行传输。通过将 CSMA、ALOHA 和 TDMA 等协议与所提出的负载自适应 MAC 协议进行比较,得出了结果。这些协议的吞吐量与节点数、吞吐量与模拟时间进行了比较。结果表明,提议的 MAC 比 ALOHA 和 CSMA 协议表现更好。不过,在支持网络中的动态移动性和负载的同时,它还能产生与 TDMA 协议相当的结果,同时支持有需求节点的紧急数据传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Load-adaptive MAC protocol for frontier detection in Underwater Mobile Sensor Network

This work proposes a load-adaptive Medium Access Control (MAC) protocol for the frontier/boundary detection application of underwater phenomena using Underwater Mobile Sensor Network (UWMSN). A leader-follower architecture of a swarm of underwater vehicles is proposed here. Autonomous Underwater Vehicles (AUVs) traverse a random mobility pattern beneath one Autonomous Surface Vehicle (ASV) (leader) in the proposed network. ASV has to guide multiple-follower AUVs in the event of interest. The vehicular swarm aims to explore the frontiers in the event to build the map. Load-adaptive MAC protocol is therefore proposed and implemented in this hybrid multi-vehicular network to ensure seamless vehicular communications. The ASV has navigational capabilities to aid the AUVs in navigation and data collection. The proposed MAC protocol can adjust the dynamic mobility and load in the network. The protocol aims to provide dynamic Time Division Multiple Access (TDMA) slots for the AUVs wirelessly linked in the vicinity of the ASV. These slots are used for ranging/navigation and data transmission. Additional urgent data from any AUVs can be transmitted in open Carrier Sense Multiple Access (CSMA) protocol following the TDMA duration. Results have been generated by comparing protocols like CSMA, ALOHA, and TDMA with the proposed Load-Adaptive MAC protocol. The protocols have been compared to the throughput vs number of nodes and throughput vs simulation time. It has been observed that the proposed MAC can perform better than ALOHA and CSMA protocols. Nevertheless, it can produce comparable results for TDMA protocol while supporting the dynamic mobility and load in the network meantime supporting urgent data transmission for nodes in demand.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
期刊最新文献
TAVA: Traceable anonymity-self-controllable V2X Authentication over dynamic multiple charging-service providers RL-based mobile edge computing scheme for high reliability low latency services in UAV-aided IIoT networks Editorial Board PLLM-CS: Pre-trained Large Language Model (LLM) for cyber threat detection in satellite networks A two-context-aware approach for navigation: A case study for vehicular route recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1