{"title":"FCOS-EAM:重叠绿色水果的精确分割方法","authors":"","doi":"10.1016/j.compag.2024.109392","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate fruit detection and segmentation based on deep learning is the key to successful harvesting robot operations, but the complex background of orchards, light and branch shading, and fruit overlap lead to low detection and segmentation accuracy and high complexity of existing methods. To address these problems, an improved green fruit segmentation method based on FCOS is proposed in this study. Firstly, its segmentation function for green fruits is realized by adding segmentation module. Then, the FCOS head network is improved by adding the Border-attention module (BAM) to detect the boundary of green fruits with higher accuracy. In addition, the features of mask branch and edge segmentation branch are fused in the segmentation module, and the appearance commonality is learned by modeling the pairwise affinity between all pixels of the feature map using non-local affinity-parsing, and finally the segmentation prediction results are output by combining the feature map of fruit shape and appearance commonality. The experimental results show that this model achieves 81.2% segmentation accuracy on apple dataset and 77.9% segmentation accuracy on persimmon dataset with relatively low guarantee complexity, which exceeds most current segmentation models. Meanwhile, this model has high robustness and can be used for the detection and segmentation work of other green fruits and vegetables in orchards, while effectively extending the application of agricultural equipment.</p></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FCOS-EAM: An accurate segmentation method for overlapping green fruits\",\"authors\":\"\",\"doi\":\"10.1016/j.compag.2024.109392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate fruit detection and segmentation based on deep learning is the key to successful harvesting robot operations, but the complex background of orchards, light and branch shading, and fruit overlap lead to low detection and segmentation accuracy and high complexity of existing methods. To address these problems, an improved green fruit segmentation method based on FCOS is proposed in this study. Firstly, its segmentation function for green fruits is realized by adding segmentation module. Then, the FCOS head network is improved by adding the Border-attention module (BAM) to detect the boundary of green fruits with higher accuracy. In addition, the features of mask branch and edge segmentation branch are fused in the segmentation module, and the appearance commonality is learned by modeling the pairwise affinity between all pixels of the feature map using non-local affinity-parsing, and finally the segmentation prediction results are output by combining the feature map of fruit shape and appearance commonality. The experimental results show that this model achieves 81.2% segmentation accuracy on apple dataset and 77.9% segmentation accuracy on persimmon dataset with relatively low guarantee complexity, which exceeds most current segmentation models. Meanwhile, this model has high robustness and can be used for the detection and segmentation work of other green fruits and vegetables in orchards, while effectively extending the application of agricultural equipment.</p></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016816992400783X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016816992400783X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
FCOS-EAM: An accurate segmentation method for overlapping green fruits
Accurate fruit detection and segmentation based on deep learning is the key to successful harvesting robot operations, but the complex background of orchards, light and branch shading, and fruit overlap lead to low detection and segmentation accuracy and high complexity of existing methods. To address these problems, an improved green fruit segmentation method based on FCOS is proposed in this study. Firstly, its segmentation function for green fruits is realized by adding segmentation module. Then, the FCOS head network is improved by adding the Border-attention module (BAM) to detect the boundary of green fruits with higher accuracy. In addition, the features of mask branch and edge segmentation branch are fused in the segmentation module, and the appearance commonality is learned by modeling the pairwise affinity between all pixels of the feature map using non-local affinity-parsing, and finally the segmentation prediction results are output by combining the feature map of fruit shape and appearance commonality. The experimental results show that this model achieves 81.2% segmentation accuracy on apple dataset and 77.9% segmentation accuracy on persimmon dataset with relatively low guarantee complexity, which exceeds most current segmentation models. Meanwhile, this model has high robustness and can be used for the detection and segmentation work of other green fruits and vegetables in orchards, while effectively extending the application of agricultural equipment.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.