{"title":"用于大规模机器类通信的通用多用户稀疏叠加传输","authors":"Ming Hui;Xuewan Zhang;Jingjing Guo","doi":"10.23919/JCN.2024.000029","DOIUrl":null,"url":null,"abstract":"To fulfill the connectivity demands in massive machine-type communications (mMTC), this paper investigates a generalized multi-user sparse superposition transmission (GMUSST) technology based on position index modulation. Due to the high computation complexity of maximum likelihood (ML) multi-user detection, a low complexity multi-path successive interference cancellation (MSIC) multi-user detector is introduced to achieve near-ML detector's block error ratio (BLER) performance. Furthermore, considering that each user is only concerned with their own transmitted signal in the downlink GMUSST system, we propose a minimum mean square error-based SIC (MMSE-SIC) detector, which can directly extract the user's transmission signal from the received superimposed signal of multiple users and is verified compared with MSIC detector. Simulation results show that the GMUSST can achieve better transmission reliability than the existing polar coded sparse code multiple access (PC-SCMA) in the short packet communication scenarios. Especially with the hybrid automatic repeat request mechanism, GMUSST requires fewer retransmissions to achieve the same BLER performance compared to PC-SCMA.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666071","citationCount":"0","resultStr":"{\"title\":\"Generalized multi-user sparse superposition transmission for massive machine-type communications\",\"authors\":\"Ming Hui;Xuewan Zhang;Jingjing Guo\",\"doi\":\"10.23919/JCN.2024.000029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To fulfill the connectivity demands in massive machine-type communications (mMTC), this paper investigates a generalized multi-user sparse superposition transmission (GMUSST) technology based on position index modulation. Due to the high computation complexity of maximum likelihood (ML) multi-user detection, a low complexity multi-path successive interference cancellation (MSIC) multi-user detector is introduced to achieve near-ML detector's block error ratio (BLER) performance. Furthermore, considering that each user is only concerned with their own transmitted signal in the downlink GMUSST system, we propose a minimum mean square error-based SIC (MMSE-SIC) detector, which can directly extract the user's transmission signal from the received superimposed signal of multiple users and is verified compared with MSIC detector. Simulation results show that the GMUSST can achieve better transmission reliability than the existing polar coded sparse code multiple access (PC-SCMA) in the short packet communication scenarios. Especially with the hybrid automatic repeat request mechanism, GMUSST requires fewer retransmissions to achieve the same BLER performance compared to PC-SCMA.\",\"PeriodicalId\":54864,\"journal\":{\"name\":\"Journal of Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666071/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10666071/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Generalized multi-user sparse superposition transmission for massive machine-type communications
To fulfill the connectivity demands in massive machine-type communications (mMTC), this paper investigates a generalized multi-user sparse superposition transmission (GMUSST) technology based on position index modulation. Due to the high computation complexity of maximum likelihood (ML) multi-user detection, a low complexity multi-path successive interference cancellation (MSIC) multi-user detector is introduced to achieve near-ML detector's block error ratio (BLER) performance. Furthermore, considering that each user is only concerned with their own transmitted signal in the downlink GMUSST system, we propose a minimum mean square error-based SIC (MMSE-SIC) detector, which can directly extract the user's transmission signal from the received superimposed signal of multiple users and is verified compared with MSIC detector. Simulation results show that the GMUSST can achieve better transmission reliability than the existing polar coded sparse code multiple access (PC-SCMA) in the short packet communication scenarios. Especially with the hybrid automatic repeat request mechanism, GMUSST requires fewer retransmissions to achieve the same BLER performance compared to PC-SCMA.
期刊介绍:
The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.