优化器在训练深度学习模型中的演变和作用

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Ieee-Caa Journal of Automatica Sinica Pub Date : 2024-09-04 DOI:10.1109/JAS.2024.124806
XiaoHao Wen;MengChu Zhou
{"title":"优化器在训练深度学习模型中的演变和作用","authors":"XiaoHao Wen;MengChu Zhou","doi":"10.1109/JAS.2024.124806","DOIUrl":null,"url":null,"abstract":"To perform well, deep learning (DL) models have to be trained well. Which optimizer should be adopted? We answer this question by discussing how optimizers have evolved from traditional methods like gradient descent to more advanced techniques to address challenges posed by high-dimensional and non-convex problem space. Ongoing challenges include their hyperparameter sensitivity, balancing between convergence and generalization performance, and improving interpretability of optimization processes. Researchers continue to seek robust, efficient, and universally applicable optimizers to advance the field of DL across various domains.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 10","pages":"2039-2042"},"PeriodicalIF":15.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10664602","citationCount":"0","resultStr":"{\"title\":\"Evolution and Role of Optimizers in Training Deep Learning Models\",\"authors\":\"XiaoHao Wen;MengChu Zhou\",\"doi\":\"10.1109/JAS.2024.124806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To perform well, deep learning (DL) models have to be trained well. Which optimizer should be adopted? We answer this question by discussing how optimizers have evolved from traditional methods like gradient descent to more advanced techniques to address challenges posed by high-dimensional and non-convex problem space. Ongoing challenges include their hyperparameter sensitivity, balancing between convergence and generalization performance, and improving interpretability of optimization processes. Researchers continue to seek robust, efficient, and universally applicable optimizers to advance the field of DL across various domains.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 10\",\"pages\":\"2039-2042\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10664602\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10664602/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10664602/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)模型要想表现出色,就必须训练有素。应该采用哪种优化器?我们通过讨论优化器如何从梯度下降等传统方法发展到更先进的技术,以应对高维和非凸问题空间带来的挑战,来回答这个问题。目前面临的挑战包括超参数敏感性、收敛性和泛化性能之间的平衡,以及提高优化过程的可解释性。研究人员将继续寻求稳健、高效和普遍适用的优化器,以推动各个领域的 DL 研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution and Role of Optimizers in Training Deep Learning Models
To perform well, deep learning (DL) models have to be trained well. Which optimizer should be adopted? We answer this question by discussing how optimizers have evolved from traditional methods like gradient descent to more advanced techniques to address challenges posed by high-dimensional and non-convex problem space. Ongoing challenges include their hyperparameter sensitivity, balancing between convergence and generalization performance, and improving interpretability of optimization processes. Researchers continue to seek robust, efficient, and universally applicable optimizers to advance the field of DL across various domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
期刊最新文献
Inside front cover Inside back cover Back cover Front cover On Zero Dynamics and Controllable Cyber-Attacks in Cyber-Physical Systems and Dynamic Coding Schemes as Their Countermeasures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1