{"title":"城市交通管制与决策建议系统:调查与展望","authors":"Qingyuan Ji;Xiaoyue Wen;Junchen Jin;Yongdong Zhu;Yisheng Lv","doi":"10.1109/JAS.2024.124659","DOIUrl":null,"url":null,"abstract":"Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems. Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level, utilizing their knowledge and expertise. However, this process is cumbersome, labor-intensive, and cannot be applied on a large network scale. Recent studies have begun to explore the applicability of recommendation system for urban traffic control, which offer increased control efficiency and scalability. Such a decision recommendation system is complex, with various interdependent components, but a systematic literature review has not yet been conducted. In this work, we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control, demonstrates the utility and efficacy of such a system in the real world using data and knowledge-driven approaches, and discusses the current challenges and potential future directions of this field.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 10","pages":"2043-2058"},"PeriodicalIF":15.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban Traffic Control Meets Decision Recommendation System: A Survey and Perspective\",\"authors\":\"Qingyuan Ji;Xiaoyue Wen;Junchen Jin;Yongdong Zhu;Yisheng Lv\",\"doi\":\"10.1109/JAS.2024.124659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems. Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level, utilizing their knowledge and expertise. However, this process is cumbersome, labor-intensive, and cannot be applied on a large network scale. Recent studies have begun to explore the applicability of recommendation system for urban traffic control, which offer increased control efficiency and scalability. Such a decision recommendation system is complex, with various interdependent components, but a systematic literature review has not yet been conducted. In this work, we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control, demonstrates the utility and efficacy of such a system in the real world using data and knowledge-driven approaches, and discusses the current challenges and potential future directions of this field.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 10\",\"pages\":\"2043-2058\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10664601/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10664601/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Urban Traffic Control Meets Decision Recommendation System: A Survey and Perspective
Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems. Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level, utilizing their knowledge and expertise. However, this process is cumbersome, labor-intensive, and cannot be applied on a large network scale. Recent studies have begun to explore the applicability of recommendation system for urban traffic control, which offer increased control efficiency and scalability. Such a decision recommendation system is complex, with various interdependent components, but a systematic literature review has not yet been conducted. In this work, we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control, demonstrates the utility and efficacy of such a system in the real world using data and knowledge-driven approaches, and discusses the current challenges and potential future directions of this field.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.