{"title":"DDL:赋予送货无人机大规模城市感知能力","authors":"Xuecheng Chen;Haoyang Wang;Yuhan Cheng;Haohao Fu;Yuxuan Liu;Fan Dang;Yunhao Liu;Jinqiang Cui;Xinlei Chen","doi":"10.1109/JSTSP.2024.3427371","DOIUrl":null,"url":null,"abstract":"Delivery drones provide a promising sensing platform for smart cities thanks to their city-wide infrastructure and large-scale deployment. However, due to limited battery lifetime and available resources, it is challenging to schedule delivery drones to derive both high sensing and delivery performance, which is a highly complicated optimization problem with several coupled decision variables. Meanwhile, this complex optimization problem involves multiple interconnected decision variables, making it even more complex. In this paper, we first propose a delivery drone-based sensing system and formulate a mixed-integer non-linear programming problem (MINLP) that jointly optimizes the sensing utility and delivery time, considering practical factors including energy capacity and available delivery drones. Then we provide an efficient solution that integrates the strength of deep reinforcement learning (DRL) and heuristic, which decouples the highly complicated optimization search process and replaces the heavy computation with a rapid approximation. Evaluation results compared with the state-of-the-art baselines show that \n<italic>DDL</i>\n improves the scheduling quality by at least 46% on average. More importantly, our proposed method could effectively improve the computational efficiency, which is up to 98 times higher than the best baseline.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 3","pages":"502-515"},"PeriodicalIF":8.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDL: Empowering Delivery Drones With Large-Scale Urban Sensing Capability\",\"authors\":\"Xuecheng Chen;Haoyang Wang;Yuhan Cheng;Haohao Fu;Yuxuan Liu;Fan Dang;Yunhao Liu;Jinqiang Cui;Xinlei Chen\",\"doi\":\"10.1109/JSTSP.2024.3427371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Delivery drones provide a promising sensing platform for smart cities thanks to their city-wide infrastructure and large-scale deployment. However, due to limited battery lifetime and available resources, it is challenging to schedule delivery drones to derive both high sensing and delivery performance, which is a highly complicated optimization problem with several coupled decision variables. Meanwhile, this complex optimization problem involves multiple interconnected decision variables, making it even more complex. In this paper, we first propose a delivery drone-based sensing system and formulate a mixed-integer non-linear programming problem (MINLP) that jointly optimizes the sensing utility and delivery time, considering practical factors including energy capacity and available delivery drones. Then we provide an efficient solution that integrates the strength of deep reinforcement learning (DRL) and heuristic, which decouples the highly complicated optimization search process and replaces the heavy computation with a rapid approximation. Evaluation results compared with the state-of-the-art baselines show that \\n<italic>DDL</i>\\n improves the scheduling quality by at least 46% on average. More importantly, our proposed method could effectively improve the computational efficiency, which is up to 98 times higher than the best baseline.\",\"PeriodicalId\":13038,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Signal Processing\",\"volume\":\"18 3\",\"pages\":\"502-515\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605737/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10605737/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
DDL: Empowering Delivery Drones With Large-Scale Urban Sensing Capability
Delivery drones provide a promising sensing platform for smart cities thanks to their city-wide infrastructure and large-scale deployment. However, due to limited battery lifetime and available resources, it is challenging to schedule delivery drones to derive both high sensing and delivery performance, which is a highly complicated optimization problem with several coupled decision variables. Meanwhile, this complex optimization problem involves multiple interconnected decision variables, making it even more complex. In this paper, we first propose a delivery drone-based sensing system and formulate a mixed-integer non-linear programming problem (MINLP) that jointly optimizes the sensing utility and delivery time, considering practical factors including energy capacity and available delivery drones. Then we provide an efficient solution that integrates the strength of deep reinforcement learning (DRL) and heuristic, which decouples the highly complicated optimization search process and replaces the heavy computation with a rapid approximation. Evaluation results compared with the state-of-the-art baselines show that
DDL
improves the scheduling quality by at least 46% on average. More importantly, our proposed method could effectively improve the computational efficiency, which is up to 98 times higher than the best baseline.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.