利用深度学习实现无小区大规模多输入多输出中的联合功率控制和先导分配

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Communications Society Pub Date : 2024-08-22 DOI:10.1109/OJCOMS.2024.3447839
Muhammad Usman Khan;Enrico Testi;Marco Chiani;Enrico Paolini
{"title":"利用深度学习实现无小区大规模多输入多输出中的联合功率控制和先导分配","authors":"Muhammad Usman Khan;Enrico Testi;Marco Chiani;Enrico Paolini","doi":"10.1109/OJCOMS.2024.3447839","DOIUrl":null,"url":null,"abstract":"Cell-free massive MIMO (CF-mMIMO) networks leverage seamless cooperation among numerous access points to serve a large number of users over the same time/frequency resources. This paper addresses the challenges of pilot and data power control, as well as pilot assignment, in the uplink of a cell-free massive MIMO (CF-mMIMO) network, where the number of users significantly exceeds that of the available orthogonal pilots. We first derive the closed-form expression of the achievable uplink rate of a user. Subsequently, harnessing the universal function approximation capability of artificial neural networks, we introduce a novel multi-task deep learning-based approach for joint power control and pilot assignment, aiming to maximize the minimum user rate. Our proposed method entails the design and unsupervised training of a deep neural network (DNN), employing a custom loss function specifically tailored to perform joint power control and pilot assignment, while simultaneously limiting the total network power usage. Extensive simulations demonstrate that our method outperforms the existing power control and pilot assignment strategies in terms of achievable network throughput, minimum user rate, and per-user energy consumption. The model versatility and adaptability are assessed by simulating two different scenarios, namely a urban macro (UMa) and an industrial one.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643563","citationCount":"0","resultStr":"{\"title\":\"Joint Power Control and Pilot Assignment in Cell-Free Massive MIMO Using Deep Learning\",\"authors\":\"Muhammad Usman Khan;Enrico Testi;Marco Chiani;Enrico Paolini\",\"doi\":\"10.1109/OJCOMS.2024.3447839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell-free massive MIMO (CF-mMIMO) networks leverage seamless cooperation among numerous access points to serve a large number of users over the same time/frequency resources. This paper addresses the challenges of pilot and data power control, as well as pilot assignment, in the uplink of a cell-free massive MIMO (CF-mMIMO) network, where the number of users significantly exceeds that of the available orthogonal pilots. We first derive the closed-form expression of the achievable uplink rate of a user. Subsequently, harnessing the universal function approximation capability of artificial neural networks, we introduce a novel multi-task deep learning-based approach for joint power control and pilot assignment, aiming to maximize the minimum user rate. Our proposed method entails the design and unsupervised training of a deep neural network (DNN), employing a custom loss function specifically tailored to perform joint power control and pilot assignment, while simultaneously limiting the total network power usage. Extensive simulations demonstrate that our method outperforms the existing power control and pilot assignment strategies in terms of achievable network throughput, minimum user rate, and per-user energy consumption. The model versatility and adaptability are assessed by simulating two different scenarios, namely a urban macro (UMa) and an industrial one.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643563\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643563/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10643563/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

无小区大规模多输入多输出(CF-mMIMO)网络利用众多接入点之间的无缝合作,通过相同的时间/频率资源为大量用户提供服务。在无小区大规模多输入多输出(CF-mMIMO)网络中,用户数量大大超过了可用正交试点的数量,本文探讨了上行链路中试点和数据功率控制以及试点分配所面临的挑战。我们首先推导出用户可实现上行链路速率的闭式表达式。随后,利用人工神经网络的通用函数逼近能力,我们引入了一种基于多任务深度学习的新方法,用于联合功率控制和先导分配,旨在最大化最小用户速率。我们提出的方法涉及深度神经网络(DNN)的设计和无监督训练,采用专门定制的损失函数来执行联合功率控制和先导分配,同时限制网络总功率的使用。大量仿真表明,就可实现的网络吞吐量、最低用户速率和每用户能耗而言,我们的方法优于现有的功率控制和先导分配策略。通过模拟两种不同的场景,即城市宏(UMa)和工业场景,对模型的通用性和适应性进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Power Control and Pilot Assignment in Cell-Free Massive MIMO Using Deep Learning
Cell-free massive MIMO (CF-mMIMO) networks leverage seamless cooperation among numerous access points to serve a large number of users over the same time/frequency resources. This paper addresses the challenges of pilot and data power control, as well as pilot assignment, in the uplink of a cell-free massive MIMO (CF-mMIMO) network, where the number of users significantly exceeds that of the available orthogonal pilots. We first derive the closed-form expression of the achievable uplink rate of a user. Subsequently, harnessing the universal function approximation capability of artificial neural networks, we introduce a novel multi-task deep learning-based approach for joint power control and pilot assignment, aiming to maximize the minimum user rate. Our proposed method entails the design and unsupervised training of a deep neural network (DNN), employing a custom loss function specifically tailored to perform joint power control and pilot assignment, while simultaneously limiting the total network power usage. Extensive simulations demonstrate that our method outperforms the existing power control and pilot assignment strategies in terms of achievable network throughput, minimum user rate, and per-user energy consumption. The model versatility and adaptability are assessed by simulating two different scenarios, namely a urban macro (UMa) and an industrial one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
期刊最新文献
GP-DGECN: Geometric Prior Dynamic Group Equivariant Convolutional Networks for Specific Emitter Identification A Tractable Framework for Spectrum Coexistence Between Satellite Receivers and Terrestrial Networks A Survey of LoRaWAN-Integrated Wearable Sensor Networks for Human Activity Recognition: Applications, Challenges and Possible Solutions Detection of Zero-Day Attacks in a Software-Defined LEO Constellation Network Using Enhanced Network Metric Predictions Few-Shot Class-Incremental Learning for Network Intrusion Detection Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1