Muhammad Usman Khan;Enrico Testi;Marco Chiani;Enrico Paolini
{"title":"利用深度学习实现无小区大规模多输入多输出中的联合功率控制和先导分配","authors":"Muhammad Usman Khan;Enrico Testi;Marco Chiani;Enrico Paolini","doi":"10.1109/OJCOMS.2024.3447839","DOIUrl":null,"url":null,"abstract":"Cell-free massive MIMO (CF-mMIMO) networks leverage seamless cooperation among numerous access points to serve a large number of users over the same time/frequency resources. This paper addresses the challenges of pilot and data power control, as well as pilot assignment, in the uplink of a cell-free massive MIMO (CF-mMIMO) network, where the number of users significantly exceeds that of the available orthogonal pilots. We first derive the closed-form expression of the achievable uplink rate of a user. Subsequently, harnessing the universal function approximation capability of artificial neural networks, we introduce a novel multi-task deep learning-based approach for joint power control and pilot assignment, aiming to maximize the minimum user rate. Our proposed method entails the design and unsupervised training of a deep neural network (DNN), employing a custom loss function specifically tailored to perform joint power control and pilot assignment, while simultaneously limiting the total network power usage. Extensive simulations demonstrate that our method outperforms the existing power control and pilot assignment strategies in terms of achievable network throughput, minimum user rate, and per-user energy consumption. The model versatility and adaptability are assessed by simulating two different scenarios, namely a urban macro (UMa) and an industrial one.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643563","citationCount":"0","resultStr":"{\"title\":\"Joint Power Control and Pilot Assignment in Cell-Free Massive MIMO Using Deep Learning\",\"authors\":\"Muhammad Usman Khan;Enrico Testi;Marco Chiani;Enrico Paolini\",\"doi\":\"10.1109/OJCOMS.2024.3447839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell-free massive MIMO (CF-mMIMO) networks leverage seamless cooperation among numerous access points to serve a large number of users over the same time/frequency resources. This paper addresses the challenges of pilot and data power control, as well as pilot assignment, in the uplink of a cell-free massive MIMO (CF-mMIMO) network, where the number of users significantly exceeds that of the available orthogonal pilots. We first derive the closed-form expression of the achievable uplink rate of a user. Subsequently, harnessing the universal function approximation capability of artificial neural networks, we introduce a novel multi-task deep learning-based approach for joint power control and pilot assignment, aiming to maximize the minimum user rate. Our proposed method entails the design and unsupervised training of a deep neural network (DNN), employing a custom loss function specifically tailored to perform joint power control and pilot assignment, while simultaneously limiting the total network power usage. Extensive simulations demonstrate that our method outperforms the existing power control and pilot assignment strategies in terms of achievable network throughput, minimum user rate, and per-user energy consumption. The model versatility and adaptability are assessed by simulating two different scenarios, namely a urban macro (UMa) and an industrial one.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643563\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643563/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10643563/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Joint Power Control and Pilot Assignment in Cell-Free Massive MIMO Using Deep Learning
Cell-free massive MIMO (CF-mMIMO) networks leverage seamless cooperation among numerous access points to serve a large number of users over the same time/frequency resources. This paper addresses the challenges of pilot and data power control, as well as pilot assignment, in the uplink of a cell-free massive MIMO (CF-mMIMO) network, where the number of users significantly exceeds that of the available orthogonal pilots. We first derive the closed-form expression of the achievable uplink rate of a user. Subsequently, harnessing the universal function approximation capability of artificial neural networks, we introduce a novel multi-task deep learning-based approach for joint power control and pilot assignment, aiming to maximize the minimum user rate. Our proposed method entails the design and unsupervised training of a deep neural network (DNN), employing a custom loss function specifically tailored to perform joint power control and pilot assignment, while simultaneously limiting the total network power usage. Extensive simulations demonstrate that our method outperforms the existing power control and pilot assignment strategies in terms of achievable network throughput, minimum user rate, and per-user energy consumption. The model versatility and adaptability are assessed by simulating two different scenarios, namely a urban macro (UMa) and an industrial one.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.