{"title":"基于视觉的动态机械故障诊断与跨模态特征对齐","authors":"Xiang Li;Shupeng Yu;Yaguo Lei;Naipeng Li;Bin Yang","doi":"10.1109/JAS.2024.124470","DOIUrl":null,"url":null,"abstract":"Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades, and the vibration acceleration data collected by contact accelerometers have been widely investigated. In many industrial scenarios, contactless sensors are more preferred. The event camera is an emerging bio-inspired technology for vision sensing, which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency. It offers a promising tool for contactless machine vibration sensing and fault diagnosis. However, the dynamic vision-based methods suffer from variations of practical factors such as camera position, machine operating condition, etc. Furthermore, as a new sensing technology, the labeled dynamic vision data are limited, which generally cannot cover a wide range of machine fault modes. Aiming at these challenges, a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper. It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance. A cross-modality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer. An event erasing method is further proposed for improving model robustness against variations. The proposed method can effectively identify unseen fault mode with dynamic vision data. Experiments on two rotating machine monitoring datasets are carried out for validations, and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 10","pages":"2068-2081"},"PeriodicalIF":15.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Vision-Based Machinery Fault Diagnosis with Cross-Modality Feature Alignment\",\"authors\":\"Xiang Li;Shupeng Yu;Yaguo Lei;Naipeng Li;Bin Yang\",\"doi\":\"10.1109/JAS.2024.124470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades, and the vibration acceleration data collected by contact accelerometers have been widely investigated. In many industrial scenarios, contactless sensors are more preferred. The event camera is an emerging bio-inspired technology for vision sensing, which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency. It offers a promising tool for contactless machine vibration sensing and fault diagnosis. However, the dynamic vision-based methods suffer from variations of practical factors such as camera position, machine operating condition, etc. Furthermore, as a new sensing technology, the labeled dynamic vision data are limited, which generally cannot cover a wide range of machine fault modes. Aiming at these challenges, a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper. It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance. A cross-modality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer. An event erasing method is further proposed for improving model robustness against variations. The proposed method can effectively identify unseen fault mode with dynamic vision data. Experiments on two rotating machine monitoring datasets are carried out for validations, and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 10\",\"pages\":\"2068-2081\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10664604/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10664604/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Dynamic Vision-Based Machinery Fault Diagnosis with Cross-Modality Feature Alignment
Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades, and the vibration acceleration data collected by contact accelerometers have been widely investigated. In many industrial scenarios, contactless sensors are more preferred. The event camera is an emerging bio-inspired technology for vision sensing, which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency. It offers a promising tool for contactless machine vibration sensing and fault diagnosis. However, the dynamic vision-based methods suffer from variations of practical factors such as camera position, machine operating condition, etc. Furthermore, as a new sensing technology, the labeled dynamic vision data are limited, which generally cannot cover a wide range of machine fault modes. Aiming at these challenges, a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper. It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance. A cross-modality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer. An event erasing method is further proposed for improving model robustness against variations. The proposed method can effectively identify unseen fault mode with dynamic vision data. Experiments on two rotating machine monitoring datasets are carried out for validations, and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.