Yinhui Li, Ruiling Lv, Jianwei Zhou, Wenjun Wang, Donghong Liu
{"title":"高频超声波结合次氯酸钠对大肠杆菌 O157:H7 的疗效和抗菌机制","authors":"Yinhui Li, Ruiling Lv, Jianwei Zhou, Wenjun Wang, Donghong Liu","doi":"10.1111/jfpe.14735","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>This study investigated the synergistic effects and mechanism of high-frequency ultrasound (HFUS) combined with sodium hypochlorite (NaClO) against <i>Escherichia coli</i> O157:H7 <i>(E. coli)</i>. The bactericidal effect of HFUS alone against <i>E. coli</i> was limited (reduced 0.14–0.30 log CFU/mL), while that of NaClO (3 mg/L) was relatively better (reduced 1.10–2.02 log CFU/mL). When combining HFUS and NaClO, the decontamination of <i>E. coli</i> increased as decreasing ultrasonic frequency and increasing ultrasonic power at the range of 2.16–5.76 log CFU/mL, which achieved an additional maximum 3.58 log CFU/mL-reduction (581 kHz, 167 W, 18 min) comparing to the total reduction of sole NaClO and HFUS treatments. The remarkable cell membrane damages caused by HFUS during the combined treatment were confirmed by membranal integrity, membranal permeability, and ultrastructural morphology analyses. Incredibly, as one of membrane damages, pores observed on the cell membrane could provide new channels for hypochlorous acid and hydrogen peroxide induced by HFUS to enter <i>E. coli</i> cells. Furthermore, those chemical substances significantly increased the reactive oxygen species (ROS) levels at a lower ultrasonic frequency and higher power, which were part of the reason for subsequent DNA damage in addition to the mechanical effects of HFUS. These results may broaden the application of high-frequency ultrasound in food sterilization.</p>\n </section>\n \n <section>\n \n <h3> Practical applications</h3>\n \n <p>There is an increasing trend toward food sterilization that prefers non-thermal processing. <i>E. coli</i> is a typical pathogen associated with foodborne disease outbreaks and has one of the broadest disease spectra. Ultrasound is a promising non-thermal technology due to its gentle action, simple operation, and environmental friendliness. This study combined ultrasound with sodium hypochlorite against <i>E. coli</i>, which obtained a remarkable synergistic bactericidal effect, making potential applications in the future food industry.</p>\n </section>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":"47 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy and antibacterial mechanism of high-frequency ultrasound combined with sodium hypochlorite against E. coli O157:H7\",\"authors\":\"Yinhui Li, Ruiling Lv, Jianwei Zhou, Wenjun Wang, Donghong Liu\",\"doi\":\"10.1111/jfpe.14735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>This study investigated the synergistic effects and mechanism of high-frequency ultrasound (HFUS) combined with sodium hypochlorite (NaClO) against <i>Escherichia coli</i> O157:H7 <i>(E. coli)</i>. The bactericidal effect of HFUS alone against <i>E. coli</i> was limited (reduced 0.14–0.30 log CFU/mL), while that of NaClO (3 mg/L) was relatively better (reduced 1.10–2.02 log CFU/mL). When combining HFUS and NaClO, the decontamination of <i>E. coli</i> increased as decreasing ultrasonic frequency and increasing ultrasonic power at the range of 2.16–5.76 log CFU/mL, which achieved an additional maximum 3.58 log CFU/mL-reduction (581 kHz, 167 W, 18 min) comparing to the total reduction of sole NaClO and HFUS treatments. The remarkable cell membrane damages caused by HFUS during the combined treatment were confirmed by membranal integrity, membranal permeability, and ultrastructural morphology analyses. Incredibly, as one of membrane damages, pores observed on the cell membrane could provide new channels for hypochlorous acid and hydrogen peroxide induced by HFUS to enter <i>E. coli</i> cells. Furthermore, those chemical substances significantly increased the reactive oxygen species (ROS) levels at a lower ultrasonic frequency and higher power, which were part of the reason for subsequent DNA damage in addition to the mechanical effects of HFUS. These results may broaden the application of high-frequency ultrasound in food sterilization.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Practical applications</h3>\\n \\n <p>There is an increasing trend toward food sterilization that prefers non-thermal processing. <i>E. coli</i> is a typical pathogen associated with foodborne disease outbreaks and has one of the broadest disease spectra. Ultrasound is a promising non-thermal technology due to its gentle action, simple operation, and environmental friendliness. This study combined ultrasound with sodium hypochlorite against <i>E. coli</i>, which obtained a remarkable synergistic bactericidal effect, making potential applications in the future food industry.</p>\\n </section>\\n </div>\",\"PeriodicalId\":15932,\"journal\":{\"name\":\"Journal of Food Process Engineering\",\"volume\":\"47 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Process Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14735\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14735","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Efficacy and antibacterial mechanism of high-frequency ultrasound combined with sodium hypochlorite against E. coli O157:H7
This study investigated the synergistic effects and mechanism of high-frequency ultrasound (HFUS) combined with sodium hypochlorite (NaClO) against Escherichia coli O157:H7 (E. coli). The bactericidal effect of HFUS alone against E. coli was limited (reduced 0.14–0.30 log CFU/mL), while that of NaClO (3 mg/L) was relatively better (reduced 1.10–2.02 log CFU/mL). When combining HFUS and NaClO, the decontamination of E. coli increased as decreasing ultrasonic frequency and increasing ultrasonic power at the range of 2.16–5.76 log CFU/mL, which achieved an additional maximum 3.58 log CFU/mL-reduction (581 kHz, 167 W, 18 min) comparing to the total reduction of sole NaClO and HFUS treatments. The remarkable cell membrane damages caused by HFUS during the combined treatment were confirmed by membranal integrity, membranal permeability, and ultrastructural morphology analyses. Incredibly, as one of membrane damages, pores observed on the cell membrane could provide new channels for hypochlorous acid and hydrogen peroxide induced by HFUS to enter E. coli cells. Furthermore, those chemical substances significantly increased the reactive oxygen species (ROS) levels at a lower ultrasonic frequency and higher power, which were part of the reason for subsequent DNA damage in addition to the mechanical effects of HFUS. These results may broaden the application of high-frequency ultrasound in food sterilization.
Practical applications
There is an increasing trend toward food sterilization that prefers non-thermal processing. E. coli is a typical pathogen associated with foodborne disease outbreaks and has one of the broadest disease spectra. Ultrasound is a promising non-thermal technology due to its gentle action, simple operation, and environmental friendliness. This study combined ultrasound with sodium hypochlorite against E. coli, which obtained a remarkable synergistic bactericidal effect, making potential applications in the future food industry.
期刊介绍:
This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.