{"title":"利用免疫细胞发挥 PARP 抑制剂的作用","authors":"Tian-Li Wang, Ie-Ming Shih","doi":"10.1016/j.cell.2024.07.058","DOIUrl":null,"url":null,"abstract":"<p>Homologous-recombination deficiency in DNA repair characterizes a unique group of cancers that are vulnerable to PARP inhibitors and cytotoxic chemotherapy. In this issue of <em>Cell</em>, Luo et al., demonstrated that this genetic attribute in cancer cells may reprogram tumor immune microenvironment and show promise of targeting effector-Treg cells.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":null,"pages":null},"PeriodicalIF":45.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing immune cells to leverage PARP inhibitors\",\"authors\":\"Tian-Li Wang, Ie-Ming Shih\",\"doi\":\"10.1016/j.cell.2024.07.058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Homologous-recombination deficiency in DNA repair characterizes a unique group of cancers that are vulnerable to PARP inhibitors and cytotoxic chemotherapy. In this issue of <em>Cell</em>, Luo et al., demonstrated that this genetic attribute in cancer cells may reprogram tumor immune microenvironment and show promise of targeting effector-Treg cells.</p>\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2024.07.058\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.07.058","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Harnessing immune cells to leverage PARP inhibitors
Homologous-recombination deficiency in DNA repair characterizes a unique group of cancers that are vulnerable to PARP inhibitors and cytotoxic chemotherapy. In this issue of Cell, Luo et al., demonstrated that this genetic attribute in cancer cells may reprogram tumor immune microenvironment and show promise of targeting effector-Treg cells.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.