{"title":"大白菜等位基因突变验证了 BrWax1 在蜡生物合成中的功能","authors":"Gengxing Song, Xiaoli Tang, Chuanhong Liu, Jiaqi Zou, Shiyao Dong, Jie Ren, Hui Feng","doi":"10.1016/j.hpj.2024.03.009","DOIUrl":null,"url":null,"abstract":"The primary function of cuticular wax is to prevent non-stomatal water loss, while the wax deficiency conferring a glossy appearance on plants is conductive to crop commodity qualities. We previously mapped a wax-deficient gene BrWax1 in a natural mutant ‘08A235-2’ by SSR marker, and predicted Bra013809 (BrWax1) as the candidate gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis). In order to verifying the function of BrWax1, two allelic wax-crystal deficiency mutants wdm4 and wdm8 from an EMS mutagenesis population of Chinese cabbage were screened. wdm4 was applied to identify the mutant gene, with the finding that BraA01g015290.3C, the homologous of AT4G24510 (AtCER2), was the candidate gene. Bra013809 in Brara_Chiifu_V1.5 and BraA01g015290.3C in Brara_Chiifu_V3.0 were annotated as the same gene in Brassicaceae Database. A SNP (C to T) on BrWax1 in wdm4 resulted in a stopgain, and a SNP (G to A) on BrWax1 in wdm8 led to the deletion of 38 bases which caused a stopgain at the 190th amino acid. These results finally verified the function of BrWax1 in the wax biosynthesis. Our findings emphasize the crucial role of the BrWax1 gene in cuticular wax biosynthesis in Chinese cabbage and suggest its potential as a valuable genetic resource for breeding for glossy appearance.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BrWax1 function in wax biosynthesis was verified by allelic mutations in Chinese cabbage\",\"authors\":\"Gengxing Song, Xiaoli Tang, Chuanhong Liu, Jiaqi Zou, Shiyao Dong, Jie Ren, Hui Feng\",\"doi\":\"10.1016/j.hpj.2024.03.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary function of cuticular wax is to prevent non-stomatal water loss, while the wax deficiency conferring a glossy appearance on plants is conductive to crop commodity qualities. We previously mapped a wax-deficient gene BrWax1 in a natural mutant ‘08A235-2’ by SSR marker, and predicted Bra013809 (BrWax1) as the candidate gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis). In order to verifying the function of BrWax1, two allelic wax-crystal deficiency mutants wdm4 and wdm8 from an EMS mutagenesis population of Chinese cabbage were screened. wdm4 was applied to identify the mutant gene, with the finding that BraA01g015290.3C, the homologous of AT4G24510 (AtCER2), was the candidate gene. Bra013809 in Brara_Chiifu_V1.5 and BraA01g015290.3C in Brara_Chiifu_V3.0 were annotated as the same gene in Brassicaceae Database. A SNP (C to T) on BrWax1 in wdm4 resulted in a stopgain, and a SNP (G to A) on BrWax1 in wdm8 led to the deletion of 38 bases which caused a stopgain at the 190th amino acid. These results finally verified the function of BrWax1 in the wax biosynthesis. Our findings emphasize the crucial role of the BrWax1 gene in cuticular wax biosynthesis in Chinese cabbage and suggest its potential as a valuable genetic resource for breeding for glossy appearance.\",\"PeriodicalId\":13178,\"journal\":{\"name\":\"Horticultural Plant Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticultural Plant Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.hpj.2024.03.009\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.hpj.2024.03.009","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
BrWax1 function in wax biosynthesis was verified by allelic mutations in Chinese cabbage
The primary function of cuticular wax is to prevent non-stomatal water loss, while the wax deficiency conferring a glossy appearance on plants is conductive to crop commodity qualities. We previously mapped a wax-deficient gene BrWax1 in a natural mutant ‘08A235-2’ by SSR marker, and predicted Bra013809 (BrWax1) as the candidate gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis). In order to verifying the function of BrWax1, two allelic wax-crystal deficiency mutants wdm4 and wdm8 from an EMS mutagenesis population of Chinese cabbage were screened. wdm4 was applied to identify the mutant gene, with the finding that BraA01g015290.3C, the homologous of AT4G24510 (AtCER2), was the candidate gene. Bra013809 in Brara_Chiifu_V1.5 and BraA01g015290.3C in Brara_Chiifu_V3.0 were annotated as the same gene in Brassicaceae Database. A SNP (C to T) on BrWax1 in wdm4 resulted in a stopgain, and a SNP (G to A) on BrWax1 in wdm8 led to the deletion of 38 bases which caused a stopgain at the 190th amino acid. These results finally verified the function of BrWax1 in the wax biosynthesis. Our findings emphasize the crucial role of the BrWax1 gene in cuticular wax biosynthesis in Chinese cabbage and suggest its potential as a valuable genetic resource for breeding for glossy appearance.
期刊介绍:
Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.