用于卵巢癌靶向治疗的亲和素功能化弹性蛋白样肽-药物共轭纳米胶束

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomacromolecules Pub Date : 2024-10-14 Epub Date: 2024-09-05 DOI:10.1021/acs.biomac.4c00640
Qingrong Li, Xiaoyuan Yang, Xuelin Xia, Xiao-Xia Xia, Deyue Yan
{"title":"用于卵巢癌靶向治疗的亲和素功能化弹性蛋白样肽-药物共轭纳米胶束","authors":"Qingrong Li, Xiaoyuan Yang, Xuelin Xia, Xiao-Xia Xia, Deyue Yan","doi":"10.1021/acs.biomac.4c00640","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant elastin-like polypeptides (ELPs) have emerged as an attractive nanoplatform for drug delivery due to their tunable genetically encoded sequence, biocompatibility, and stimuli-responsive self-assembly behaviors. Here, we designed and biosynthesized an HER2 (human epidermal growth factor receptor 2)-targeted affibody-ELP fusion protein (Z-ELP), which was subsequently conjugated with monomethyl auristatin E (MMAE) to build a protein-drug conjugate (Z-ELP-M). Due to its thermal response, Z-ELP-M can immediately self-assemble into a nanomicelle at physiological temperature. Benefiting from its active targeting and nanomorphology, Z-ELP-M exhibits enhanced cellular internalization and deep tumor penetration <i>in vitro</i>. Moreover, Z-ELP-M shows excellent tumor targeting and superior antitumor efficacy in HER2-positive ovarian cancer, demonstrating a relative tumor growth inhibition of 104.6%. These findings suggest that an affibody-functionalized elastin-like peptide-drug conjugate nanomicelle is an efficient strategy to improve antitumor efficacy and biosafety in cancer therapy.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"6474-6484"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affibody-Functionalized Elastin-like Peptide-Drug Conjugate Nanomicelle for Targeted Ovarian Cancer Therapy.\",\"authors\":\"Qingrong Li, Xiaoyuan Yang, Xuelin Xia, Xiao-Xia Xia, Deyue Yan\",\"doi\":\"10.1021/acs.biomac.4c00640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recombinant elastin-like polypeptides (ELPs) have emerged as an attractive nanoplatform for drug delivery due to their tunable genetically encoded sequence, biocompatibility, and stimuli-responsive self-assembly behaviors. Here, we designed and biosynthesized an HER2 (human epidermal growth factor receptor 2)-targeted affibody-ELP fusion protein (Z-ELP), which was subsequently conjugated with monomethyl auristatin E (MMAE) to build a protein-drug conjugate (Z-ELP-M). Due to its thermal response, Z-ELP-M can immediately self-assemble into a nanomicelle at physiological temperature. Benefiting from its active targeting and nanomorphology, Z-ELP-M exhibits enhanced cellular internalization and deep tumor penetration <i>in vitro</i>. Moreover, Z-ELP-M shows excellent tumor targeting and superior antitumor efficacy in HER2-positive ovarian cancer, demonstrating a relative tumor growth inhibition of 104.6%. These findings suggest that an affibody-functionalized elastin-like peptide-drug conjugate nanomicelle is an efficient strategy to improve antitumor efficacy and biosafety in cancer therapy.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"6474-6484\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c00640\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00640","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

重组弹性蛋白样多肽(ELPs)因其可调的基因编码序列、生物相容性和刺激响应性自组装行为,已成为一种极具吸引力的纳米给药平台。在这里,我们设计并生物合成了一种HER2(人表皮生长因子受体2)靶向亲和素-ELP融合蛋白(Z-ELP),随后将其与单甲基金丝桃素E(MMAE)共轭,形成了一种蛋白质-药物共轭物(Z-ELP-M)。由于其热反应特性,Z-ELP-M 可在生理温度下立即自组装成纳米小体。得益于其主动靶向性和纳米形态,Z-ELP-M 在体外表现出更强的细胞内化能力和深层肿瘤穿透能力。此外,Z-ELP-M 在 HER2 阳性卵巢癌中显示出卓越的肿瘤靶向性和抗肿瘤功效,对肿瘤生长的相对抑制率高达 104.6%。这些研究结果表明,亲和素功能化弹性蛋白样肽-药物共轭纳米簇是提高抗肿瘤疗效和肿瘤治疗生物安全性的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Affibody-Functionalized Elastin-like Peptide-Drug Conjugate Nanomicelle for Targeted Ovarian Cancer Therapy.

Recombinant elastin-like polypeptides (ELPs) have emerged as an attractive nanoplatform for drug delivery due to their tunable genetically encoded sequence, biocompatibility, and stimuli-responsive self-assembly behaviors. Here, we designed and biosynthesized an HER2 (human epidermal growth factor receptor 2)-targeted affibody-ELP fusion protein (Z-ELP), which was subsequently conjugated with monomethyl auristatin E (MMAE) to build a protein-drug conjugate (Z-ELP-M). Due to its thermal response, Z-ELP-M can immediately self-assemble into a nanomicelle at physiological temperature. Benefiting from its active targeting and nanomorphology, Z-ELP-M exhibits enhanced cellular internalization and deep tumor penetration in vitro. Moreover, Z-ELP-M shows excellent tumor targeting and superior antitumor efficacy in HER2-positive ovarian cancer, demonstrating a relative tumor growth inhibition of 104.6%. These findings suggest that an affibody-functionalized elastin-like peptide-drug conjugate nanomicelle is an efficient strategy to improve antitumor efficacy and biosafety in cancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
期刊最新文献
Dendrimer/Copper(II) Complex-Mediated siRNA Delivery Disrupts Lactate Metabolism to Reprogram the Local Immune Microenvironment against Tumor Growth and Metastasis. A Versatile Composite Hydrogel with Spatiotemporal Drug Delivery of Mesoporous ZnO and Recombinant Human Collagen for Diabetic Infected Wound Healing. Hydrogels Based on Polyelectrolyte Complexes: Underlying Principles and Biomedical Applications. Single-Step Synthesis of Highly Sensitive 19F MRI Tracers by Gradient Copolymerization-Induced Self-Assembly. The Improved Redispersibility of Cellulose Nanocrystals Using Hydroxypropyl Cellulose and Structure Color from Redispersed Cellulose Nanocrystals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1