Bangli Tang, Liuyong Ding, Chengzhi Ding, Dekui He, Haojie Su, Juan Tao
{"title":"在估计气候变暖和二氧化碳酸化对鱼类生长的影响时,耳石的可靠性取决于具体情况。","authors":"Bangli Tang, Liuyong Ding, Chengzhi Ding, Dekui He, Haojie Su, Juan Tao","doi":"10.1111/gcb.17501","DOIUrl":null,"url":null,"abstract":"<p>Otoliths are frequently used as proxies to examine the impacts of climate change on fish growth in marine and freshwater ecosystems worldwide. However, the large sensitivity differences in otolith growth responses to typical changing environmental factors (i.e., temperature and CO<sub>2</sub> concentration), coupled with unclear drivers and potential inconsistencies with fish body growth, fundamentally challenge the reliability of such otolith applications. Here, we performed a global meta-analysis of experiments investigating the direct effects of warming (297 cases) and CO<sub>2</sub> acidification (293 cases) on fish otolith growth and compared them with fish body growth responses. Hierarchical models were used to assess the overall effect and quantify the influence of nine explanatory factors (e.g., fish feeding habit, life history stage, habitat type, and experimental amplitude and duration). The overall effects of warming and acidification on otolith growth were positive and significant, and the effect size of warming (effect size = 0.4003, otolith size of the treatment group increased by 49.23% compared to that of the control group) was larger than that of acidification (0.0724, 7.51%). All factors examined contributed to the heterogeneity of effect sizes, with larger responses commonly observed in carnivorous fish, marine species, and young individuals. Warming amplitudes and durations and acidification amplitudes increased the effect sizes, while acidification durations decreased the effect sizes. Otolith growth responses were consistent with, but greater than, fish body growth responses under warming. In contrast, fish body growth responses were not significant under acidification (effect size = −0.0051, <i>p</i> = .6185) and thus cannot be estimated using otoliths. Therefore, our study highlights that the reliability of applying otoliths to examine climate change impacts is likely varied, as the sensitivity of otolith growth responses and the consistency between the growth responses of otoliths and fish bodies are context-dependent.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Otolith reliability is context-dependent for estimating warming and CO2 acidification impacts on fish growth\",\"authors\":\"Bangli Tang, Liuyong Ding, Chengzhi Ding, Dekui He, Haojie Su, Juan Tao\",\"doi\":\"10.1111/gcb.17501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Otoliths are frequently used as proxies to examine the impacts of climate change on fish growth in marine and freshwater ecosystems worldwide. However, the large sensitivity differences in otolith growth responses to typical changing environmental factors (i.e., temperature and CO<sub>2</sub> concentration), coupled with unclear drivers and potential inconsistencies with fish body growth, fundamentally challenge the reliability of such otolith applications. Here, we performed a global meta-analysis of experiments investigating the direct effects of warming (297 cases) and CO<sub>2</sub> acidification (293 cases) on fish otolith growth and compared them with fish body growth responses. Hierarchical models were used to assess the overall effect and quantify the influence of nine explanatory factors (e.g., fish feeding habit, life history stage, habitat type, and experimental amplitude and duration). The overall effects of warming and acidification on otolith growth were positive and significant, and the effect size of warming (effect size = 0.4003, otolith size of the treatment group increased by 49.23% compared to that of the control group) was larger than that of acidification (0.0724, 7.51%). All factors examined contributed to the heterogeneity of effect sizes, with larger responses commonly observed in carnivorous fish, marine species, and young individuals. Warming amplitudes and durations and acidification amplitudes increased the effect sizes, while acidification durations decreased the effect sizes. Otolith growth responses were consistent with, but greater than, fish body growth responses under warming. In contrast, fish body growth responses were not significant under acidification (effect size = −0.0051, <i>p</i> = .6185) and thus cannot be estimated using otoliths. Therefore, our study highlights that the reliability of applying otoliths to examine climate change impacts is likely varied, as the sensitivity of otolith growth responses and the consistency between the growth responses of otoliths and fish bodies are context-dependent.</p>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17501\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17501","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Otolith reliability is context-dependent for estimating warming and CO2 acidification impacts on fish growth
Otoliths are frequently used as proxies to examine the impacts of climate change on fish growth in marine and freshwater ecosystems worldwide. However, the large sensitivity differences in otolith growth responses to typical changing environmental factors (i.e., temperature and CO2 concentration), coupled with unclear drivers and potential inconsistencies with fish body growth, fundamentally challenge the reliability of such otolith applications. Here, we performed a global meta-analysis of experiments investigating the direct effects of warming (297 cases) and CO2 acidification (293 cases) on fish otolith growth and compared them with fish body growth responses. Hierarchical models were used to assess the overall effect and quantify the influence of nine explanatory factors (e.g., fish feeding habit, life history stage, habitat type, and experimental amplitude and duration). The overall effects of warming and acidification on otolith growth were positive and significant, and the effect size of warming (effect size = 0.4003, otolith size of the treatment group increased by 49.23% compared to that of the control group) was larger than that of acidification (0.0724, 7.51%). All factors examined contributed to the heterogeneity of effect sizes, with larger responses commonly observed in carnivorous fish, marine species, and young individuals. Warming amplitudes and durations and acidification amplitudes increased the effect sizes, while acidification durations decreased the effect sizes. Otolith growth responses were consistent with, but greater than, fish body growth responses under warming. In contrast, fish body growth responses were not significant under acidification (effect size = −0.0051, p = .6185) and thus cannot be estimated using otoliths. Therefore, our study highlights that the reliability of applying otoliths to examine climate change impacts is likely varied, as the sensitivity of otolith growth responses and the consistency between the growth responses of otoliths and fish bodies are context-dependent.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.