全面回顾可持续电动汽车的能量采集技术。

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES Environmental Science and Pollution Research Pub Date : 2024-09-06 DOI:10.1007/s11356-024-34865-8
Abhidnya Sunil Mhatre, Prashant Shukla
{"title":"全面回顾可持续电动汽车的能量采集技术。","authors":"Abhidnya Sunil Mhatre, Prashant Shukla","doi":"10.1007/s11356-024-34865-8","DOIUrl":null,"url":null,"abstract":"<p><p>This review paper provides a comprehensive examination of energy harvesting technologies tailored for electric vehicles (EVs). Against the backdrop of the automotive industry's rapid evolution towards electrification and sustainability, the paper explores a diverse range of techniques. The analysis encompasses the strengths, weaknesses, applicability in various scenarios, and potential implications for the future of EVs. A key finding of the review highlights regenerative braking as a pivotal and highly efficient method for energy recovery, particularly in urban settings. In addition to extending battery life, regenerative braking significantly boosts energy efficiency of EVs. The paper also delves into the challenges associated with integrated solar energy systems, emphasizing issues related to efficiency and weather dependency. Kinetic energy recovery systems (KERS) are discussed for their substantial power boost during acceleration in both motorsports and road cars. Additionally, the review explores regenerative shock absorbers, which capture energy from suspension movement, enhancing ride comfort and increasing vehicle energy economy, especially on uneven terrain. The piezoelectric system, though intriguing, is found to have low power output from mechanical vibration, prompting further exploration for integration into EVs. However, complexities and cost considerations arise in their integration with the vehicle's suspension system.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of energy harvesting technologies for sustainable electric vehicles.\",\"authors\":\"Abhidnya Sunil Mhatre, Prashant Shukla\",\"doi\":\"10.1007/s11356-024-34865-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review paper provides a comprehensive examination of energy harvesting technologies tailored for electric vehicles (EVs). Against the backdrop of the automotive industry's rapid evolution towards electrification and sustainability, the paper explores a diverse range of techniques. The analysis encompasses the strengths, weaknesses, applicability in various scenarios, and potential implications for the future of EVs. A key finding of the review highlights regenerative braking as a pivotal and highly efficient method for energy recovery, particularly in urban settings. In addition to extending battery life, regenerative braking significantly boosts energy efficiency of EVs. The paper also delves into the challenges associated with integrated solar energy systems, emphasizing issues related to efficiency and weather dependency. Kinetic energy recovery systems (KERS) are discussed for their substantial power boost during acceleration in both motorsports and road cars. Additionally, the review explores regenerative shock absorbers, which capture energy from suspension movement, enhancing ride comfort and increasing vehicle energy economy, especially on uneven terrain. The piezoelectric system, though intriguing, is found to have low power output from mechanical vibration, prompting further exploration for integration into EVs. However, complexities and cost considerations arise in their integration with the vehicle's suspension system.</p>\",\"PeriodicalId\":545,\"journal\":{\"name\":\"Environmental Science and Pollution Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11356-024-34865-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-34865-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述论文全面探讨了为电动汽车(EV)量身定制的能量收集技术。在汽车行业向电气化和可持续性快速发展的背景下,本文探讨了各种不同的技术。分析包括各种方案的优缺点、适用性以及对电动汽车未来的潜在影响。综述的一个重要发现强调,再生制动是一种关键且高效的能量回收方法,尤其是在城市环境中。除了延长电池寿命,再生制动还能显著提高电动汽车的能源效率。本文还深入探讨了与集成太阳能系统相关的挑战,强调了与效率和天气依赖性相关的问题。论文讨论了动能回收系统(KERS)在赛车和公路汽车加速过程中产生的巨大动力。此外,本综述还探讨了再生式减震器,这种减震器可从悬挂运动中获取能量,从而提高乘坐舒适性并增加车辆的能源经济性,尤其是在不平坦的地形上。压电系统虽然引人入胜,但其机械振动输出功率较低,这促使人们进一步探索将其集成到电动汽车中。然而,在与车辆悬挂系统集成时,会出现复杂性和成本方面的考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive review of energy harvesting technologies for sustainable electric vehicles.

This review paper provides a comprehensive examination of energy harvesting technologies tailored for electric vehicles (EVs). Against the backdrop of the automotive industry's rapid evolution towards electrification and sustainability, the paper explores a diverse range of techniques. The analysis encompasses the strengths, weaknesses, applicability in various scenarios, and potential implications for the future of EVs. A key finding of the review highlights regenerative braking as a pivotal and highly efficient method for energy recovery, particularly in urban settings. In addition to extending battery life, regenerative braking significantly boosts energy efficiency of EVs. The paper also delves into the challenges associated with integrated solar energy systems, emphasizing issues related to efficiency and weather dependency. Kinetic energy recovery systems (KERS) are discussed for their substantial power boost during acceleration in both motorsports and road cars. Additionally, the review explores regenerative shock absorbers, which capture energy from suspension movement, enhancing ride comfort and increasing vehicle energy economy, especially on uneven terrain. The piezoelectric system, though intriguing, is found to have low power output from mechanical vibration, prompting further exploration for integration into EVs. However, complexities and cost considerations arise in their integration with the vehicle's suspension system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
期刊最新文献
A systematic review on sustainable utilization of plastic waste in asphalt: assessing environmental and health impact, performance, and economic viability. Eliminating hazardous pollutants: treatment options for dioxins and surfactants from water and wastewater: an updated review. Green synthesis of N-doped-carbon dots/ZnO for enhanced photocatalytic degradation of methylene blue dye: optimization of reaction parameters. The addition of humic acid into soil contaminated with microplastics enhanced the growth of black gram (Vigna mungo L. Hepper) and modified the rhizosphere microbial community. Assessing plasmatic transport inhibitors of thyroid hormone in mammals in the Xenopus Eleutheroembryonic Thyroid Assay (XETA).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1