{"title":"用生物信息学方法鉴定为研究纤维肌发育不良发病机制而建立的小鼠品系中PTM水平发生变化的蛋白质。","authors":"A I Voronina, Yu V Miroshnichenko, V S Skvortsov","doi":"10.18097/PBMC20247004248","DOIUrl":null,"url":null,"abstract":"<p><p>Data from a mass spectrometry experiment of a mouse line developed to study the mechanisms of fibromuscular dysplasia and deposited by d'Escamard et al. in ProteomeXchange (PXD051750) have been analyzed. Identification of peptides with post-translational modifications (PTMs) was repeated using more stringent conditions than in the original work. The following modifications were considered during analysis of changes in the PTM levels in experimental and control groups of mice: acetylation of lysine residue and N-terminal protein peptide, ubiquitination of lysine residue, phosphorylation of serine, threonine and tyrosine residues, and deamination of asparagine and glutamine residues. The multistage analysis resulted in selection of 23 proteins with PTMs for which different levels of modification between experimental and control groups could be assumed. These included six proteins with N-terminal protein acetylation, which were particularly interesting: P80318 (T-complex protein 1 subunit gamma), P43274 (Histone H1.4), P97823 (Acyl-protein thioesterase 1), P63242 (Eukaryotic translation initiation factor 5A-1), Q3UMT1 (Protein phosphatase 1 regulatory subunit 12C), Q9D8Y0 (EF-hand domain-containing protein D2). Thus, repeated bioinformatic analysis of the data deposited in the specialized databases resulted in detection of changes in the level of N-terminal acetylation of proteins that might be functionally significant in the mechanisms underlying the development of fibromuscular dysplasia.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinformatic identification of proteins with altered PTM levels in a mouse line established to study the mechanisms of the development of fibromuscular dysplasia.\",\"authors\":\"A I Voronina, Yu V Miroshnichenko, V S Skvortsov\",\"doi\":\"10.18097/PBMC20247004248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data from a mass spectrometry experiment of a mouse line developed to study the mechanisms of fibromuscular dysplasia and deposited by d'Escamard et al. in ProteomeXchange (PXD051750) have been analyzed. Identification of peptides with post-translational modifications (PTMs) was repeated using more stringent conditions than in the original work. The following modifications were considered during analysis of changes in the PTM levels in experimental and control groups of mice: acetylation of lysine residue and N-terminal protein peptide, ubiquitination of lysine residue, phosphorylation of serine, threonine and tyrosine residues, and deamination of asparagine and glutamine residues. The multistage analysis resulted in selection of 23 proteins with PTMs for which different levels of modification between experimental and control groups could be assumed. These included six proteins with N-terminal protein acetylation, which were particularly interesting: P80318 (T-complex protein 1 subunit gamma), P43274 (Histone H1.4), P97823 (Acyl-protein thioesterase 1), P63242 (Eukaryotic translation initiation factor 5A-1), Q3UMT1 (Protein phosphatase 1 regulatory subunit 12C), Q9D8Y0 (EF-hand domain-containing protein D2). Thus, repeated bioinformatic analysis of the data deposited in the specialized databases resulted in detection of changes in the level of N-terminal acetylation of proteins that might be functionally significant in the mechanisms underlying the development of fibromuscular dysplasia.</p>\",\"PeriodicalId\":8889,\"journal\":{\"name\":\"Biomeditsinskaya khimiya\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomeditsinskaya khimiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18097/PBMC20247004248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20247004248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
我们对 d'Escamard 等人为研究纤维肌发育不良机制而开发的小鼠品系的质谱实验数据进行了分析,该品系已存入 ProteomeXchange (PXD051750)。使用比最初工作更严格的条件重复鉴定了具有翻译后修饰(PTMs)的肽段。在分析实验组和对照组小鼠的 PTM 水平变化时,考虑了以下修饰:赖氨酸残基和 N 端蛋白肽的乙酰化,赖氨酸残基的泛素化,丝氨酸、苏氨酸和酪氨酸残基的磷酸化,以及天冬酰胺和谷氨酰胺残基的脱氨。通过多阶段分析,选出了 23 个具有 PTM 的蛋白质,可以推测实验组和对照组之间存在不同程度的修饰。其中包括 6 个具有 N 端蛋白乙酰化的蛋白质,这些蛋白质尤其引人关注:P80318(T-复合体蛋白 1 亚基 gamma)、P43274(组蛋白 H1.4)、P97823(酰基蛋白硫酯酶 1)、P63242(真核翻译启动因子 5A-1)、Q3UMT1(蛋白磷酸酶 1 调节亚基 12C)、Q9D8Y0(含 EF-手结构域蛋白 D2)。因此,通过对存入专业数据库的数据进行反复的生物信息学分析,发现了蛋白质 N 端乙酰化水平的变化,这些变化可能对纤维肌肉发育不良的发病机制具有重要的功能意义。
Bioinformatic identification of proteins with altered PTM levels in a mouse line established to study the mechanisms of the development of fibromuscular dysplasia.
Data from a mass spectrometry experiment of a mouse line developed to study the mechanisms of fibromuscular dysplasia and deposited by d'Escamard et al. in ProteomeXchange (PXD051750) have been analyzed. Identification of peptides with post-translational modifications (PTMs) was repeated using more stringent conditions than in the original work. The following modifications were considered during analysis of changes in the PTM levels in experimental and control groups of mice: acetylation of lysine residue and N-terminal protein peptide, ubiquitination of lysine residue, phosphorylation of serine, threonine and tyrosine residues, and deamination of asparagine and glutamine residues. The multistage analysis resulted in selection of 23 proteins with PTMs for which different levels of modification between experimental and control groups could be assumed. These included six proteins with N-terminal protein acetylation, which were particularly interesting: P80318 (T-complex protein 1 subunit gamma), P43274 (Histone H1.4), P97823 (Acyl-protein thioesterase 1), P63242 (Eukaryotic translation initiation factor 5A-1), Q3UMT1 (Protein phosphatase 1 regulatory subunit 12C), Q9D8Y0 (EF-hand domain-containing protein D2). Thus, repeated bioinformatic analysis of the data deposited in the specialized databases resulted in detection of changes in the level of N-terminal acetylation of proteins that might be functionally significant in the mechanisms underlying the development of fibromuscular dysplasia.
Biomeditsinskaya khimiyaBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍:
The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).