肝草 Marchantia polymorpha 叶绿体发育的简化调控。

IF 7.5 1区 生物学 Q1 CELL BIOLOGY Cell reports Pub Date : 2024-09-04 DOI:10.1016/j.celrep.2024.114696
Nataliya E Yelina, Eftychios Frangedakis, Zhemin Wang, Tina B Schreier, Jenna Rever, Marta Tomaselli, Edith C F Forestier, Kumari Billakurthi, Sibo Ren, Yahui Bai, Julia Stewart-Wood, Jim Haseloff, Silin Zhong, Julian M Hibberd
{"title":"肝草 Marchantia polymorpha 叶绿体发育的简化调控。","authors":"Nataliya E Yelina, Eftychios Frangedakis, Zhemin Wang, Tina B Schreier, Jenna Rever, Marta Tomaselli, Edith C F Forestier, Kumari Billakurthi, Sibo Ren, Yahui Bai, Julia Stewart-Wood, Jim Haseloff, Silin Zhong, Julian M Hibberd","doi":"10.1016/j.celrep.2024.114696","DOIUrl":null,"url":null,"abstract":"<p><p>Chloroplasts develop from undifferentiated plastids in response to light. In angiosperms, after the perception of light, the Elongated Hypocotyl 5 (HY5) transcription factor initiates photomorphogenesis, and two families of transcription factors known as GOLDEN2-LIKE (GLK) and GATA are considered master regulators of chloroplast development. In addition, the MIR171-targeted SCARECROW-LIKE GRAS transcription factors also impact chlorophyll biosynthesis. The extent to which these proteins carry out conserved roles in non-seed plants is not known. Using the model liverwort Marchantia polymorpha, we show that GLK controls chloroplast biogenesis, and HY5 shows a small conditional effect on chlorophyll content. Chromatin immunoprecipitation sequencing (ChIP-seq) revealed that MpGLK has a broader set of targets than has been reported in angiosperms. We also identified a functional GLK homolog in green algae. In summary, our data support the hypothesis that GLK carries out a conserved role relating to chloroplast biogenesis in land plants and green algae.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Streamlined regulation of chloroplast development in the liverwort Marchantia polymorpha.\",\"authors\":\"Nataliya E Yelina, Eftychios Frangedakis, Zhemin Wang, Tina B Schreier, Jenna Rever, Marta Tomaselli, Edith C F Forestier, Kumari Billakurthi, Sibo Ren, Yahui Bai, Julia Stewart-Wood, Jim Haseloff, Silin Zhong, Julian M Hibberd\",\"doi\":\"10.1016/j.celrep.2024.114696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chloroplasts develop from undifferentiated plastids in response to light. In angiosperms, after the perception of light, the Elongated Hypocotyl 5 (HY5) transcription factor initiates photomorphogenesis, and two families of transcription factors known as GOLDEN2-LIKE (GLK) and GATA are considered master regulators of chloroplast development. In addition, the MIR171-targeted SCARECROW-LIKE GRAS transcription factors also impact chlorophyll biosynthesis. The extent to which these proteins carry out conserved roles in non-seed plants is not known. Using the model liverwort Marchantia polymorpha, we show that GLK controls chloroplast biogenesis, and HY5 shows a small conditional effect on chlorophyll content. Chromatin immunoprecipitation sequencing (ChIP-seq) revealed that MpGLK has a broader set of targets than has been reported in angiosperms. We also identified a functional GLK homolog in green algae. In summary, our data support the hypothesis that GLK carries out a conserved role relating to chloroplast biogenesis in land plants and green algae.</p>\",\"PeriodicalId\":9798,\"journal\":{\"name\":\"Cell reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2024.114696\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114696","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

叶绿体是由未分化的质体在光照下发育而成的。在被子植物中,感光后,下胚轴伸长 5(HY5)转录因子启动了光形态发生,而被称为 GOLDEN2-LIKE(GLK)和 GATA 的两个转录因子家族被认为是叶绿体发育的主调节因子。此外,以 MIR171 为靶标的 SCARECROW-LIKE GRAS 转录因子也会影响叶绿素的生物合成。这些蛋白质在非种子植物中发挥保守作用的程度尚不清楚。通过使用模式肝草 Marchantia polymorpha,我们发现 GLK 控制叶绿体的生物合成,而 HY5 对叶绿素含量的影响很小。染色质免疫沉淀测序(ChIP-seq)显示,与被子植物相比,MpGLK具有更广泛的靶标集。我们还在绿藻中发现了一个功能性 GLK 同源物。总之,我们的数据支持这样的假设,即 GLK 在陆生植物和绿藻的叶绿体生物发生中发挥着保守的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Streamlined regulation of chloroplast development in the liverwort Marchantia polymorpha.

Chloroplasts develop from undifferentiated plastids in response to light. In angiosperms, after the perception of light, the Elongated Hypocotyl 5 (HY5) transcription factor initiates photomorphogenesis, and two families of transcription factors known as GOLDEN2-LIKE (GLK) and GATA are considered master regulators of chloroplast development. In addition, the MIR171-targeted SCARECROW-LIKE GRAS transcription factors also impact chlorophyll biosynthesis. The extent to which these proteins carry out conserved roles in non-seed plants is not known. Using the model liverwort Marchantia polymorpha, we show that GLK controls chloroplast biogenesis, and HY5 shows a small conditional effect on chlorophyll content. Chromatin immunoprecipitation sequencing (ChIP-seq) revealed that MpGLK has a broader set of targets than has been reported in angiosperms. We also identified a functional GLK homolog in green algae. In summary, our data support the hypothesis that GLK carries out a conserved role relating to chloroplast biogenesis in land plants and green algae.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
期刊最新文献
Integrative identification of non-coding regulatory regions driving metastatic prostate cancer Cross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis Dynamic phosphorylation of FOXA1 by Aurora B guides post-mitotic gene reactivation Multi-trait analysis reveals risk loci for heart failure and the shared genetic etiology with blood lipids, blood pressure, and blood glucose Diribonuclease activity eliminates toxic diribonucleotide accumulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1