玉米微生物组的取样和分析。

Jason G Wallace, Alonso Favela, Sierra Raglin
{"title":"玉米微生物组的取样和分析。","authors":"Jason G Wallace, Alonso Favela, Sierra Raglin","doi":"10.1101/pdb.top108463","DOIUrl":null,"url":null,"abstract":"<p><p>Maize is an important plant for both global food security and genetics research. As the importance of microorganisms to plant health is becoming clearer, there is a growing interest in understanding the relationship between maize and its associated microbiome; i.e., the collection of microorganisms living on, around, and inside the plant. The ultimate goal of this research is to use these microbial communities to support more robust and sustainable maize production. Here, we provide an overview of recent progress in the field of maize microbiome research. We discuss the major microbiome compartments (rhizosphere, phyllosphere, and endosphere) and known functions of the microbiome. We also review the methods currently available to study the maize microbiome and its functions, and discuss how to carry out maize microbiome experiments, including both a general workflow (suitable for most microbiome analyses) and maize-specific experimental considerations.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling and Analysis of the Maize Microbiome.\",\"authors\":\"Jason G Wallace, Alonso Favela, Sierra Raglin\",\"doi\":\"10.1101/pdb.top108463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maize is an important plant for both global food security and genetics research. As the importance of microorganisms to plant health is becoming clearer, there is a growing interest in understanding the relationship between maize and its associated microbiome; i.e., the collection of microorganisms living on, around, and inside the plant. The ultimate goal of this research is to use these microbial communities to support more robust and sustainable maize production. Here, we provide an overview of recent progress in the field of maize microbiome research. We discuss the major microbiome compartments (rhizosphere, phyllosphere, and endosphere) and known functions of the microbiome. We also review the methods currently available to study the maize microbiome and its functions, and discuss how to carry out maize microbiome experiments, including both a general workflow (suitable for most microbiome analyses) and maize-specific experimental considerations.</p>\",\"PeriodicalId\":10496,\"journal\":{\"name\":\"Cold Spring Harbor protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.top108463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.top108463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

玉米是全球粮食安全和遗传学研究的重要植物。随着微生物对植物健康的重要性日益明确,人们越来越有兴趣了解玉米与其相关微生物群落(即生活在植物上、植物周围和植物内部的微生物集合)之间的关系。这项研究的最终目标是利用这些微生物群落支持更稳健、更可持续的玉米生产。在此,我们将概述玉米微生物组研究领域的最新进展。我们讨论了微生物组的主要分区(根瘤层、植被层和内层)以及微生物组的已知功能。我们还回顾了目前可用来研究玉米微生物组及其功能的方法,并讨论了如何进行玉米微生物组实验,包括一般工作流程(适用于大多数微生物组分析)和玉米特定实验的注意事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sampling and Analysis of the Maize Microbiome.

Maize is an important plant for both global food security and genetics research. As the importance of microorganisms to plant health is becoming clearer, there is a growing interest in understanding the relationship between maize and its associated microbiome; i.e., the collection of microorganisms living on, around, and inside the plant. The ultimate goal of this research is to use these microbial communities to support more robust and sustainable maize production. Here, we provide an overview of recent progress in the field of maize microbiome research. We discuss the major microbiome compartments (rhizosphere, phyllosphere, and endosphere) and known functions of the microbiome. We also review the methods currently available to study the maize microbiome and its functions, and discuss how to carry out maize microbiome experiments, including both a general workflow (suitable for most microbiome analyses) and maize-specific experimental considerations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cold Spring Harbor protocols
Cold Spring Harbor protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍: Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.
期刊最新文献
Optimized Methods for Applying and Assessing Heat, Drought, and Nutrient Stress of Maize Seedlings in Controlled Environment Experiments. Cloning of Affibody Libraries for Display Methods. Engineering of Affibody Molecules. Selection of Affibody Molecules Using Staphylococcal Display. Selection of Affibody Molecules Using Phage Display.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1