用于膝关节肌肉骨骼和有限元建模的自动化稳健工具。

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Engineering Pub Date : 2024-09-05 DOI:10.1109/TBME.2024.3438272
Amir Esrafilian, Shekhar S Chandra, Anthony A Gatti, Mikko Nissi, Anne-Mari Mustonen, Laura Saisanen, Jusa Reijonen, Petteri Nieminen, Petro Julkunen, Juha Toyras, David J Saxby, David G Lloyd, Rami K Korhonen
{"title":"用于膝关节肌肉骨骼和有限元建模的自动化稳健工具。","authors":"Amir Esrafilian, Shekhar S Chandra, Anthony A Gatti, Mikko Nissi, Anne-Mari Mustonen, Laura Saisanen, Jusa Reijonen, Petteri Nieminen, Petro Julkunen, Juha Toyras, David J Saxby, David G Lloyd, Rami K Korhonen","doi":"10.1109/TBME.2024.3438272","DOIUrl":null,"url":null,"abstract":"<p><p>: To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline.</p><p><strong>Methods: </strong>Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci.</p><p><strong>Results: </strong>Volumes of knee bones, cartilages, and menisci did not significantly differ (p>0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly (p<0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain.</p><p><strong>Conclusion: </strong>The template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions.</p><p><strong>Significance: </strong>The MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Automated and Robust Tool for Musculoskeletal and Finite Element Modeling of the Knee Joint.\",\"authors\":\"Amir Esrafilian, Shekhar S Chandra, Anthony A Gatti, Mikko Nissi, Anne-Mari Mustonen, Laura Saisanen, Jusa Reijonen, Petteri Nieminen, Petro Julkunen, Juha Toyras, David J Saxby, David G Lloyd, Rami K Korhonen\",\"doi\":\"10.1109/TBME.2024.3438272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>: To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline.</p><p><strong>Methods: </strong>Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci.</p><p><strong>Results: </strong>Volumes of knee bones, cartilages, and menisci did not significantly differ (p>0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly (p<0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain.</p><p><strong>Conclusion: </strong>The template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions.</p><p><strong>Significance: </strong>The MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2024.3438272\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3438272","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

:目的:开发并评估自动、稳健的膝关节肌肉骨骼有限元(MSK-FE)建模管道:使用磁共振成像(MRI)训练 nnU-Net 网络,以自动分割膝关节骨骼(股骨、胫骨、髌骨和腓骨)、软骨(股骨、胫骨和髌骨)、半月板和主要膝关节韧带。为了扩大适用范围,我们使用了两种不同的磁共振成像序列。接下来,我们使用两种 MSK-FE 建模流水线:基于模板和自动匹配,创建了未见数据集的 MSK-FE 模型。MSK 模型具有个性化的膝关节几何形状和多自由度弹性地基接触。软骨和半月板的 FE 模型采用纤维增强的多孔膨胀弹性材料模型:结果:不同核磁共振成像序列中膝关节骨骼、软骨和半月板的体积差异不大(P>0.05)。在膝关节被动屈曲试验中,MSK 模型估计的膝关节次要运动学特性与文献中的活体和模拟值一致。在基于模板的模型和自动套合 FE 模型之间,估计的软骨力学往往存在显著差异(p 结论:与自动镶嵌法相比,基于模板的建模方法提供了一种更快速、更稳健的工具,而估算的膝关节生物力学结果却不相上下。不过,对于膝关节明显不规则(如软骨损伤)的受试者,自动镶嵌法可能会提供更准确的估计:MSK-FE建模工具提供了一种快速、易用且稳健的方法,用于研究任务和个人特定的膝关节软骨和半月板机械响应,在个性化康复规划等方面具有重要前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Automated and Robust Tool for Musculoskeletal and Finite Element Modeling of the Knee Joint.

: To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline.

Methods: Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci.

Results: Volumes of knee bones, cartilages, and menisci did not significantly differ (p>0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly (p<0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain.

Conclusion: The template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions.

Significance: The MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Biomedical Engineering Handling Editors Information IEEE Engineering in Medicine and Biology Society Information IEEE Transactions on Biomedical Engineering Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1