{"title":"移植的成纤维细胞承受了压力。","authors":"Fiona M. Watt","doi":"10.1126/science.adr9294","DOIUrl":null,"url":null,"abstract":"<div >Differences between skin in different parts of the body are well recognized, but exploiting those differences to benefit the millions of people worldwide with prosthetic limbs is a new prospect. The skin of the palms and soles, known as volar skin, is specialized to withstand physical and mechanical forces, such as friction, shear stress, and pressure. Limb prostheses come into close contact with stump skin that is not adapted to these forces. As a result, the skin can break down, resulting in pain, ulceration, and infection (<i>1</i>). On page 1059 of this issue, Lee <i>et al</i>. (<i>2</i>) describe the distinctive properties of fibroblasts from volar skin and demonstrate, in a clinical trial of healthy volunteers, that injecting autologous volar fibroblasts (derived from the volunteers’ own tissue) confers volar features on nonvolar skin that persist for several months. This is a promising step toward improved quality of life for prosthesis wearers.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transplanted fibroblasts take the pressure\",\"authors\":\"Fiona M. Watt\",\"doi\":\"10.1126/science.adr9294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Differences between skin in different parts of the body are well recognized, but exploiting those differences to benefit the millions of people worldwide with prosthetic limbs is a new prospect. The skin of the palms and soles, known as volar skin, is specialized to withstand physical and mechanical forces, such as friction, shear stress, and pressure. Limb prostheses come into close contact with stump skin that is not adapted to these forces. As a result, the skin can break down, resulting in pain, ulceration, and infection (<i>1</i>). On page 1059 of this issue, Lee <i>et al</i>. (<i>2</i>) describe the distinctive properties of fibroblasts from volar skin and demonstrate, in a clinical trial of healthy volunteers, that injecting autologous volar fibroblasts (derived from the volunteers’ own tissue) confers volar features on nonvolar skin that persist for several months. This is a promising step toward improved quality of life for prosthesis wearers.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adr9294\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adr9294","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Differences between skin in different parts of the body are well recognized, but exploiting those differences to benefit the millions of people worldwide with prosthetic limbs is a new prospect. The skin of the palms and soles, known as volar skin, is specialized to withstand physical and mechanical forces, such as friction, shear stress, and pressure. Limb prostheses come into close contact with stump skin that is not adapted to these forces. As a result, the skin can break down, resulting in pain, ulceration, and infection (1). On page 1059 of this issue, Lee et al. (2) describe the distinctive properties of fibroblasts from volar skin and demonstrate, in a clinical trial of healthy volunteers, that injecting autologous volar fibroblasts (derived from the volunteers’ own tissue) confers volar features on nonvolar skin that persist for several months. This is a promising step toward improved quality of life for prosthesis wearers.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.