Heng Zhang, Wen Xu, Yiming Xiao, Francois M. Peeters, Milorad V. Milošević
{"title":"过渡金属二卤化物高对称性同硅层的电子能带结构","authors":"Heng Zhang, Wen Xu, Yiming Xiao, Francois M. Peeters, Milorad V. Milošević","doi":"10.1103/physrevb.110.115410","DOIUrl":null,"url":null,"abstract":"High-symmetric homobilayer transition metal dichalcogenides (TMDs) are important members of the bilayer (BL) van der Waals material family. Here we present a systematic study of the electronic band structure in low-energy regime in homo-BL TMD structures by using the standard <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>k</mi><mo>·</mo><mi>p</mi></mrow></math> method. Six types of BL TMD stacking configurations, which satisfy the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>C</mi><mn>3</mn></msub></math> symmetry are considered and they are <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi mathvariant=\"normal\">H</mi><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">M</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\"normal\">H</mi><mi mathvariant=\"normal\">X</mi><mi mathvariant=\"normal\">M</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\"normal\">H</mi><mi mathvariant=\"normal\">X</mi><mi mathvariant=\"normal\">X</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\"normal\">R</mi><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">M</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\"normal\">R</mi><mi mathvariant=\"normal\">X</mi><mi mathvariant=\"normal\">M</mi></msubsup></math>, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi mathvariant=\"normal\">R</mi><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">X</mi></msubsup></math>. The intrinsic spin-orbit coupling (SOC) in the conduction and valence bands and the phase of interlayer hopping matrix elements are included in our investigation. Taking BL <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>MoS</mi><mn>2</mn></msub></math> as an example, we examine the electronic energy spectra, the electron density of states, and the Fermi energies in these BL structures. We find that the electron energy dispersions in high-symmetric BL TMDs are not parabolic-like, where the band parameters (such as the energy gap, the effective electron band mass and the fourth-order correction coefficient in different subbands) depend markedly on the stacking configurations. Interestingly, the spin splitting in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">H</mi></math>-stacked BL TMDs is suppressed because of center-inversion symmetry and time-reversal symmetry. Importantly, the phase of the interlayer hopping matrix element affects significantly the electronic properties of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi mathvariant=\"normal\">H</mi><mi mathvariant=\"normal\">X</mi><mi mathvariant=\"normal\">X</mi></msubsup></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi mathvariant=\"normal\">R</mi><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">M</mi></msubsup></math> stacked BL TMDs. The methodology and the results presented in this study can foster further exploration of the basic physical properties of BL TMDs for potential applications in electronics and optoelectronics.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic band structure of high-symmetry homobilayers of transition metal dichalcogenides\",\"authors\":\"Heng Zhang, Wen Xu, Yiming Xiao, Francois M. Peeters, Milorad V. Milošević\",\"doi\":\"10.1103/physrevb.110.115410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-symmetric homobilayer transition metal dichalcogenides (TMDs) are important members of the bilayer (BL) van der Waals material family. Here we present a systematic study of the electronic band structure in low-energy regime in homo-BL TMD structures by using the standard <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>k</mi><mo>·</mo><mi>p</mi></mrow></math> method. Six types of BL TMD stacking configurations, which satisfy the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>C</mi><mn>3</mn></msub></math> symmetry are considered and they are <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi mathvariant=\\\"normal\\\">H</mi><mi mathvariant=\\\"normal\\\">M</mi><mi mathvariant=\\\"normal\\\">M</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\\\"normal\\\">H</mi><mi mathvariant=\\\"normal\\\">X</mi><mi mathvariant=\\\"normal\\\">M</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\\\"normal\\\">H</mi><mi mathvariant=\\\"normal\\\">X</mi><mi mathvariant=\\\"normal\\\">X</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\\\"normal\\\">R</mi><mi mathvariant=\\\"normal\\\">M</mi><mi mathvariant=\\\"normal\\\">M</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\\\"normal\\\">R</mi><mi mathvariant=\\\"normal\\\">X</mi><mi mathvariant=\\\"normal\\\">M</mi></msubsup></math>, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi mathvariant=\\\"normal\\\">R</mi><mi mathvariant=\\\"normal\\\">M</mi><mi mathvariant=\\\"normal\\\">X</mi></msubsup></math>. The intrinsic spin-orbit coupling (SOC) in the conduction and valence bands and the phase of interlayer hopping matrix elements are included in our investigation. Taking BL <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>MoS</mi><mn>2</mn></msub></math> as an example, we examine the electronic energy spectra, the electron density of states, and the Fermi energies in these BL structures. We find that the electron energy dispersions in high-symmetric BL TMDs are not parabolic-like, where the band parameters (such as the energy gap, the effective electron band mass and the fourth-order correction coefficient in different subbands) depend markedly on the stacking configurations. Interestingly, the spin splitting in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">H</mi></math>-stacked BL TMDs is suppressed because of center-inversion symmetry and time-reversal symmetry. Importantly, the phase of the interlayer hopping matrix element affects significantly the electronic properties of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi mathvariant=\\\"normal\\\">H</mi><mi mathvariant=\\\"normal\\\">X</mi><mi mathvariant=\\\"normal\\\">X</mi></msubsup></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi mathvariant=\\\"normal\\\">R</mi><mi mathvariant=\\\"normal\\\">M</mi><mi mathvariant=\\\"normal\\\">M</mi></msubsup></math> stacked BL TMDs. The methodology and the results presented in this study can foster further exploration of the basic physical properties of BL TMDs for potential applications in electronics and optoelectronics.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.115410\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.115410","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Electronic band structure of high-symmetry homobilayers of transition metal dichalcogenides
High-symmetric homobilayer transition metal dichalcogenides (TMDs) are important members of the bilayer (BL) van der Waals material family. Here we present a systematic study of the electronic band structure in low-energy regime in homo-BL TMD structures by using the standard method. Six types of BL TMD stacking configurations, which satisfy the symmetry are considered and they are , and . The intrinsic spin-orbit coupling (SOC) in the conduction and valence bands and the phase of interlayer hopping matrix elements are included in our investigation. Taking BL as an example, we examine the electronic energy spectra, the electron density of states, and the Fermi energies in these BL structures. We find that the electron energy dispersions in high-symmetric BL TMDs are not parabolic-like, where the band parameters (such as the energy gap, the effective electron band mass and the fourth-order correction coefficient in different subbands) depend markedly on the stacking configurations. Interestingly, the spin splitting in -stacked BL TMDs is suppressed because of center-inversion symmetry and time-reversal symmetry. Importantly, the phase of the interlayer hopping matrix element affects significantly the electronic properties of and stacked BL TMDs. The methodology and the results presented in this study can foster further exploration of the basic physical properties of BL TMDs for potential applications in electronics and optoelectronics.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter