{"title":"粒度对苯并三唑在氯化钠溶液中对碳钢的缓蚀和吸附性能的影响","authors":"Panjun Wang, Jinke Wang, Yao Huang, Xuequn Cheng, Zhiwei Zhao, Lingwei Ma, Shun Wang, Ruijie Han, Zichang Zhang, Dawei Zhang, Xiaogang Li","doi":"10.1016/j.jmst.2024.07.050","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the adsorption mechanism, the film formation process, and the inhibition performance of benzotriazole (BTAH) on carbon steels with different grain sizes (i.e., 24.5, 4.3, and 0.6 µm) in 3.5 wt.% NaCl solution. The results demonstrate that grain refinement significantly impacts the adsorption and inhibition performance of BTAH on carbon steels. Ultra-refinement of steel grains to 0.6 µm improves the maximum inhibition efficiency of BTAH to 90.0% within 168 h of immersion, which was much higher than that of the steels with 24.5 µm (73.6%) and 4.3 µm grain sizes (81.7%). Notably, grain sizes of 4.3 and 0.6 µm facilitate a combination of physisorption and chemisorption of BTAH after 120 h of immersion, as evidenced by the X-ray photoelectron spectroscopy (XPS) results and Langmuir adsorption isotherms, while BTAH adsorbed on carbon steels with a grain size of 24.5 µm through physisorption during the 168 h of immersion. Ultra-refinement of grains has beneficial impacts on promoting the formation of a stable and dense corrosion inhibitor film, leading to improved corrosion resistance and the mitigation of non-uniform corrosion. These advantageous effects can be attributed to the higher adsorption energy at grain boundaries (approximately –3.12 eV) compared to grain interiors (ranging from –0.79 to 2.47 eV), promoting both the physisorption and chemisorption of organic corrosion inhibitors. The investigation comprehensively illustrates, for the first time, the effects of grain size on the adsorption mechanism, film formation process, and inhibition performance of organic corrosion inhibitors on carbon steels. This study demonstrates a promising approach to enhancing corrosion inhibition performance through microstructural design.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of grain size on the corrosion inhibition and adsorption performance of benzotriazole on carbon steel in NaCl solution\",\"authors\":\"Panjun Wang, Jinke Wang, Yao Huang, Xuequn Cheng, Zhiwei Zhao, Lingwei Ma, Shun Wang, Ruijie Han, Zichang Zhang, Dawei Zhang, Xiaogang Li\",\"doi\":\"10.1016/j.jmst.2024.07.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the adsorption mechanism, the film formation process, and the inhibition performance of benzotriazole (BTAH) on carbon steels with different grain sizes (i.e., 24.5, 4.3, and 0.6 µm) in 3.5 wt.% NaCl solution. The results demonstrate that grain refinement significantly impacts the adsorption and inhibition performance of BTAH on carbon steels. Ultra-refinement of steel grains to 0.6 µm improves the maximum inhibition efficiency of BTAH to 90.0% within 168 h of immersion, which was much higher than that of the steels with 24.5 µm (73.6%) and 4.3 µm grain sizes (81.7%). Notably, grain sizes of 4.3 and 0.6 µm facilitate a combination of physisorption and chemisorption of BTAH after 120 h of immersion, as evidenced by the X-ray photoelectron spectroscopy (XPS) results and Langmuir adsorption isotherms, while BTAH adsorbed on carbon steels with a grain size of 24.5 µm through physisorption during the 168 h of immersion. Ultra-refinement of grains has beneficial impacts on promoting the formation of a stable and dense corrosion inhibitor film, leading to improved corrosion resistance and the mitigation of non-uniform corrosion. These advantageous effects can be attributed to the higher adsorption energy at grain boundaries (approximately –3.12 eV) compared to grain interiors (ranging from –0.79 to 2.47 eV), promoting both the physisorption and chemisorption of organic corrosion inhibitors. The investigation comprehensively illustrates, for the first time, the effects of grain size on the adsorption mechanism, film formation process, and inhibition performance of organic corrosion inhibitors on carbon steels. This study demonstrates a promising approach to enhancing corrosion inhibition performance through microstructural design.</p>\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.07.050\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.07.050","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of grain size on the corrosion inhibition and adsorption performance of benzotriazole on carbon steel in NaCl solution
This study investigates the adsorption mechanism, the film formation process, and the inhibition performance of benzotriazole (BTAH) on carbon steels with different grain sizes (i.e., 24.5, 4.3, and 0.6 µm) in 3.5 wt.% NaCl solution. The results demonstrate that grain refinement significantly impacts the adsorption and inhibition performance of BTAH on carbon steels. Ultra-refinement of steel grains to 0.6 µm improves the maximum inhibition efficiency of BTAH to 90.0% within 168 h of immersion, which was much higher than that of the steels with 24.5 µm (73.6%) and 4.3 µm grain sizes (81.7%). Notably, grain sizes of 4.3 and 0.6 µm facilitate a combination of physisorption and chemisorption of BTAH after 120 h of immersion, as evidenced by the X-ray photoelectron spectroscopy (XPS) results and Langmuir adsorption isotherms, while BTAH adsorbed on carbon steels with a grain size of 24.5 µm through physisorption during the 168 h of immersion. Ultra-refinement of grains has beneficial impacts on promoting the formation of a stable and dense corrosion inhibitor film, leading to improved corrosion resistance and the mitigation of non-uniform corrosion. These advantageous effects can be attributed to the higher adsorption energy at grain boundaries (approximately –3.12 eV) compared to grain interiors (ranging from –0.79 to 2.47 eV), promoting both the physisorption and chemisorption of organic corrosion inhibitors. The investigation comprehensively illustrates, for the first time, the effects of grain size on the adsorption mechanism, film formation process, and inhibition performance of organic corrosion inhibitors on carbon steels. This study demonstrates a promising approach to enhancing corrosion inhibition performance through microstructural design.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.