分析序列构象关系和探索无序蛋白胨疏水模式的高通量工作流程

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2024-09-06 DOI:10.1016/j.chempr.2024.07.025
Erin C. Day, Supraja S. Chittari, Keila C. Cunha, Roy J. Zhao, James N. Dodds, Delaney C. Davis, Erin S. Baker, Rebecca B. Berlow, Joan-Emma Shea, Rishikesh U. Kulkarni, Abigail S. Knight
{"title":"分析序列构象关系和探索无序蛋白胨疏水模式的高通量工作流程","authors":"Erin C. Day, Supraja S. Chittari, Keila C. Cunha, Roy J. Zhao, James N. Dodds, Delaney C. Davis, Erin S. Baker, Rebecca B. Berlow, Joan-Emma Shea, Rishikesh U. Kulkarni, Abigail S. Knight","doi":"10.1016/j.chempr.2024.07.025","DOIUrl":null,"url":null,"abstract":"<p>Understanding how a macromolecule’s primary sequence governs its conformational landscape is crucial for elucidating its function, yet these design principles are still emerging for macromolecules with intrinsic disorder. Herein, we introduce a high-throughput workflow that implements a practical colorimetric conformational assay, introduces a semi-automated sequencing protocol using matrix-assisted laser desorption/ionization and tandem mass spectrometry (MALDI-MS/MS), and develops a generalizable sequence-structure algorithm. Using a model system of 20mer peptidomimetics containing polar glycine and hydrophobic <em>N</em>-butylglycine residues, we identified nine classifications of conformational disorder and isolated 122 unique sequences across varied compositions and conformations. Conformational distributions of three compositionally identical library sequences were corroborated through atomistic simulations and ion mobility spectrometry coupled with liquid chromatography. A data-driven strategy was developed using existing sequence variables and data-derived “motifs” to inform a machine-learning algorithm toward conformation prediction. This multifaceted approach enhances our understanding of sequence-conformation relationships and offers a powerful tool for accelerating the discovery of materials with conformational control.</p>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-throughput workflow to analyze sequence-conformation relationships and explore hydrophobic patterning in disordered peptoids\",\"authors\":\"Erin C. Day, Supraja S. Chittari, Keila C. Cunha, Roy J. Zhao, James N. Dodds, Delaney C. Davis, Erin S. Baker, Rebecca B. Berlow, Joan-Emma Shea, Rishikesh U. Kulkarni, Abigail S. Knight\",\"doi\":\"10.1016/j.chempr.2024.07.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding how a macromolecule’s primary sequence governs its conformational landscape is crucial for elucidating its function, yet these design principles are still emerging for macromolecules with intrinsic disorder. Herein, we introduce a high-throughput workflow that implements a practical colorimetric conformational assay, introduces a semi-automated sequencing protocol using matrix-assisted laser desorption/ionization and tandem mass spectrometry (MALDI-MS/MS), and develops a generalizable sequence-structure algorithm. Using a model system of 20mer peptidomimetics containing polar glycine and hydrophobic <em>N</em>-butylglycine residues, we identified nine classifications of conformational disorder and isolated 122 unique sequences across varied compositions and conformations. Conformational distributions of three compositionally identical library sequences were corroborated through atomistic simulations and ion mobility spectrometry coupled with liquid chromatography. A data-driven strategy was developed using existing sequence variables and data-derived “motifs” to inform a machine-learning algorithm toward conformation prediction. This multifaceted approach enhances our understanding of sequence-conformation relationships and offers a powerful tool for accelerating the discovery of materials with conformational control.</p>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2024.07.025\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.07.025","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解大分子的主序列如何支配其构象格局对于阐明其功能至关重要,然而这些设计原则对于具有内在无序性的大分子来说仍是崭露头角。在本文中,我们介绍了一种高通量工作流程,它实现了一种实用的比色构象测定法,介绍了一种使用基质辅助激光解吸/电离和串联质谱(MALDI-MS/MS)的半自动测序方案,并开发了一种可通用的序列结构算法。利用含有极性甘氨酸和疏水性 N-丁基甘氨酸残基的 20 聚合物拟肽模型系统,我们确定了九种构象紊乱分类,并分离出 122 个不同组成和构象的独特序列。通过原子模拟和离子迁移谱-液相色谱法,我们证实了三个成分相同的文库序列的构象分布。利用现有序列变量和数据衍生的 "图案 "开发了一种数据驱动策略,为构象预测的机器学习算法提供信息。这种多方面的方法增强了我们对序列-构象关系的理解,为加速发现具有构象控制能力的材料提供了强有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A high-throughput workflow to analyze sequence-conformation relationships and explore hydrophobic patterning in disordered peptoids

Understanding how a macromolecule’s primary sequence governs its conformational landscape is crucial for elucidating its function, yet these design principles are still emerging for macromolecules with intrinsic disorder. Herein, we introduce a high-throughput workflow that implements a practical colorimetric conformational assay, introduces a semi-automated sequencing protocol using matrix-assisted laser desorption/ionization and tandem mass spectrometry (MALDI-MS/MS), and develops a generalizable sequence-structure algorithm. Using a model system of 20mer peptidomimetics containing polar glycine and hydrophobic N-butylglycine residues, we identified nine classifications of conformational disorder and isolated 122 unique sequences across varied compositions and conformations. Conformational distributions of three compositionally identical library sequences were corroborated through atomistic simulations and ion mobility spectrometry coupled with liquid chromatography. A data-driven strategy was developed using existing sequence variables and data-derived “motifs” to inform a machine-learning algorithm toward conformation prediction. This multifaceted approach enhances our understanding of sequence-conformation relationships and offers a powerful tool for accelerating the discovery of materials with conformational control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
De novo luciferases enable multiplexed bioluminescence imaging One-pot catalytic conversion of polyethylene wastes to gasoline through a dual-catalyst system New light on proton transfer: Spectral and kinetic signature of a transient Eigen complex Sequence-defined main-chain photoswitching macromolecules with odd-even effect-controlled properties Direct production of o-xylene from six-component BTEXs using a channel-pore interconnected metal-organic framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1