Joseph Shingleton, David Mustard, Steven Dyke, Hannah Williams, Emma Bennett, Thomas Finnie
{"title":"回溯:从病例的时间和空间分布中确定故意释放炭疽杆菌来源的改进方法。","authors":"Joseph Shingleton, David Mustard, Steven Dyke, Hannah Williams, Emma Bennett, Thomas Finnie","doi":"10.1371/journal.pcbi.1010817","DOIUrl":null,"url":null,"abstract":"<p><p>Reverse epidemiology is a mathematical modelling tool used to ascertain information about the source of a pathogen, given the spatial and temporal distribution of cases, hospitalisations and deaths. In the context of a deliberately released pathogen, such as Bacillus anthracis (the disease-causing organism of anthrax), this can allow responders to quickly identify the location and timing of the release, as well as other factors such as the strength of the release, and the realized wind speed and direction at release. These estimates can then be used to parameterise a predictive mechanistic model, allowing for estimation of the potential scale of the release, and to optimise the distribution of prophylaxis. In this paper we present two novel approaches to reverse epidemiology, and demonstrate their utility in responding to a simulated deliberate release of B. anthracis in ten locations in the UK and compare these to the standard grid-search approach. The two methods-a modified MCMC and a Recurrent Convolutional Neural Network-are able to identify the source location and timing of the release with significantly better accuracy compared to the grid-search approach. Further, the neural network method is able to do inference on new data significantly quicker than either the grid-search or novel MCMC methods, allowing for rapid deployment in time-sensitive outbreaks.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419379/pdf/","citationCount":"0","resultStr":"{\"title\":\"Backtracking: Improved methods for identifying the source of a deliberate release of Bacillus anthracis from the temporal and spatial distribution of cases.\",\"authors\":\"Joseph Shingleton, David Mustard, Steven Dyke, Hannah Williams, Emma Bennett, Thomas Finnie\",\"doi\":\"10.1371/journal.pcbi.1010817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reverse epidemiology is a mathematical modelling tool used to ascertain information about the source of a pathogen, given the spatial and temporal distribution of cases, hospitalisations and deaths. In the context of a deliberately released pathogen, such as Bacillus anthracis (the disease-causing organism of anthrax), this can allow responders to quickly identify the location and timing of the release, as well as other factors such as the strength of the release, and the realized wind speed and direction at release. These estimates can then be used to parameterise a predictive mechanistic model, allowing for estimation of the potential scale of the release, and to optimise the distribution of prophylaxis. In this paper we present two novel approaches to reverse epidemiology, and demonstrate their utility in responding to a simulated deliberate release of B. anthracis in ten locations in the UK and compare these to the standard grid-search approach. The two methods-a modified MCMC and a Recurrent Convolutional Neural Network-are able to identify the source location and timing of the release with significantly better accuracy compared to the grid-search approach. Further, the neural network method is able to do inference on new data significantly quicker than either the grid-search or novel MCMC methods, allowing for rapid deployment in time-sensitive outbreaks.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419379/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1010817\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1010817","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Backtracking: Improved methods for identifying the source of a deliberate release of Bacillus anthracis from the temporal and spatial distribution of cases.
Reverse epidemiology is a mathematical modelling tool used to ascertain information about the source of a pathogen, given the spatial and temporal distribution of cases, hospitalisations and deaths. In the context of a deliberately released pathogen, such as Bacillus anthracis (the disease-causing organism of anthrax), this can allow responders to quickly identify the location and timing of the release, as well as other factors such as the strength of the release, and the realized wind speed and direction at release. These estimates can then be used to parameterise a predictive mechanistic model, allowing for estimation of the potential scale of the release, and to optimise the distribution of prophylaxis. In this paper we present two novel approaches to reverse epidemiology, and demonstrate their utility in responding to a simulated deliberate release of B. anthracis in ten locations in the UK and compare these to the standard grid-search approach. The two methods-a modified MCMC and a Recurrent Convolutional Neural Network-are able to identify the source location and timing of the release with significantly better accuracy compared to the grid-search approach. Further, the neural network method is able to do inference on new data significantly quicker than either the grid-search or novel MCMC methods, allowing for rapid deployment in time-sensitive outbreaks.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.