界面热耗散在有机场效应晶体管运行稳定性中的关键作用。

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-09-06 DOI:10.1126/sciadv.adn5964
Kai Tie, Jiannan Qi, Yongxu Hu, Yao Fu, Shougang Sun, Yanpeng Wang, Yinan Huang, Zhongwu Wang, Liqian Yuan, Liqiang Li, Dacheng Wei, Xiaosong Chen, Wenping Hu
{"title":"界面热耗散在有机场效应晶体管运行稳定性中的关键作用。","authors":"Kai Tie,&nbsp;Jiannan Qi,&nbsp;Yongxu Hu,&nbsp;Yao Fu,&nbsp;Shougang Sun,&nbsp;Yanpeng Wang,&nbsp;Yinan Huang,&nbsp;Zhongwu Wang,&nbsp;Liqian Yuan,&nbsp;Liqiang Li,&nbsp;Dacheng Wei,&nbsp;Xiaosong Chen,&nbsp;Wenping Hu","doi":"10.1126/sciadv.adn5964","DOIUrl":null,"url":null,"abstract":"<div >The operational stability becomes a key issue affecting the commercialization for organic field-effect transistors (OFETs). It is widely recognized to be closely related to the defects and traps at the interface between dielectric and organic semiconductors, but this understanding does not always effectively address operational instability, implying that the factors influencing the operational stability have not been fully understood. Here, we reveal that the self-heating effect is another crucial factor in operational stability. By using hexagonal boron nitride (hBN) to assist interfacial thermal dissipation, the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) FETs exhibit high mobility of 14.18 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and saturated power density up to 1.8 × 10<sup>4</sup> W cm<sup>−2</sup>. The OFET can operate at a power density of 1.06 × 10<sup>4</sup> W cm<sup>−2</sup> for 30,000 s with negligible performance degradation, showing excellent operational stability under high power density. This work deepens the understanding on operational stability and develops an effective way for ultrahigh stable devices.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adn5964","citationCount":"0","resultStr":"{\"title\":\"Crucial role of interfacial thermal dissipation in the operational stability of organic field-effect transistors\",\"authors\":\"Kai Tie,&nbsp;Jiannan Qi,&nbsp;Yongxu Hu,&nbsp;Yao Fu,&nbsp;Shougang Sun,&nbsp;Yanpeng Wang,&nbsp;Yinan Huang,&nbsp;Zhongwu Wang,&nbsp;Liqian Yuan,&nbsp;Liqiang Li,&nbsp;Dacheng Wei,&nbsp;Xiaosong Chen,&nbsp;Wenping Hu\",\"doi\":\"10.1126/sciadv.adn5964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The operational stability becomes a key issue affecting the commercialization for organic field-effect transistors (OFETs). It is widely recognized to be closely related to the defects and traps at the interface between dielectric and organic semiconductors, but this understanding does not always effectively address operational instability, implying that the factors influencing the operational stability have not been fully understood. Here, we reveal that the self-heating effect is another crucial factor in operational stability. By using hexagonal boron nitride (hBN) to assist interfacial thermal dissipation, the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) FETs exhibit high mobility of 14.18 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and saturated power density up to 1.8 × 10<sup>4</sup> W cm<sup>−2</sup>. The OFET can operate at a power density of 1.06 × 10<sup>4</sup> W cm<sup>−2</sup> for 30,000 s with negligible performance degradation, showing excellent operational stability under high power density. This work deepens the understanding on operational stability and develops an effective way for ultrahigh stable devices.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adn5964\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adn5964\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adn5964","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

工作稳定性是影响有机场效应晶体管(OFET)商业化的一个关键问题。人们普遍认为这与介电质和有机半导体界面上的缺陷和陷阱密切相关,但这种认识并不总能有效地解决工作不稳定性问题,这意味着影响工作稳定性的因素尚未被完全理解。在这里,我们揭示了自热效应是影响运行稳定性的另一个关键因素。通过使用六方氮化硼(hBN)来帮助界面散热,二萘并[2,3-b:2',3'-f]噻吩并[3,2-b]噻吩(DNTT)场效应晶体管表现出 14.18 cm2 V-1 s-1 的高迁移率和高达 1.8 × 104 W cm-2 的饱和功率密度。该场效应晶体管可在 1.06 × 104 W cm-2 的功率密度下工作 30,000 秒,性能下降几乎可以忽略不计,显示出在高功率密度下出色的工作稳定性。这项工作加深了人们对工作稳定性的理解,并为超高稳定器件开发了一条有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crucial role of interfacial thermal dissipation in the operational stability of organic field-effect transistors
The operational stability becomes a key issue affecting the commercialization for organic field-effect transistors (OFETs). It is widely recognized to be closely related to the defects and traps at the interface between dielectric and organic semiconductors, but this understanding does not always effectively address operational instability, implying that the factors influencing the operational stability have not been fully understood. Here, we reveal that the self-heating effect is another crucial factor in operational stability. By using hexagonal boron nitride (hBN) to assist interfacial thermal dissipation, the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) FETs exhibit high mobility of 14.18 cm2 V−1 s−1 and saturated power density up to 1.8 × 104 W cm−2. The OFET can operate at a power density of 1.06 × 104 W cm−2 for 30,000 s with negligible performance degradation, showing excellent operational stability under high power density. This work deepens the understanding on operational stability and develops an effective way for ultrahigh stable devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Phonon engineering of atomic-scale defects in superconducting quantum circuits Inhalable SPRAY nanoparticles by modular peptide assemblies reverse alveolar inflammation in lethal Gram-negative bacteria infection A pleiotropic recurrent dominant ITPR3 variant causes a complex multisystemic disease Evolutionary changes of noncoding elements associated with transition of sexual mode in Caenorhabditis nematodes Twisting vortex lines regularize Navier-Stokes turbulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1