{"title":"经济型混合新颖性检测利用全局历时语义不确定性,增强基于核磁共振成像的前交叉韧带撕裂诊断。","authors":"Athanasios Siouras , Serafeim Moustakidis , George Chalatsis , Tuan Aqeel Bohoran , Michael Hantes , Marianna Vlychou , Sotiris Tasoulis , Archontis Giannakidis , Dimitrios Tsaopoulos","doi":"10.1016/j.compmedimag.2024.102424","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an innovative hybrid deep learning (DL) framework that reformulates the sagittal MRI-based anterior cruciate ligament (ACL) tear classification task as a novelty detection problem to tackle class imbalance. We introduce a highly discriminative novelty score, which leverages the aleatoric semantic uncertainty as this is modeled in the class scores outputted by the YOLOv5-nano object detection (OD) model. To account for tissue continuity, we propose using the global scores (probability vector) when the model is applied to the entire sagittal sequence. The second module of the proposed pipeline constitutes the MINIROCKET timeseries classification model for determining whether a knee has an ACL tear. To better evaluate the generalization capabilities of our approach, we also carry out cross-database testing involving two public databases (KneeMRI and MRNet) and a validation-only database from University General Hospital of Larissa, Greece. Our method consistently outperformed (p-value<0.05) the state-of-the-art (SOTA) approaches on the KneeMRI dataset and achieved better accuracy and sensitivity on the MRNet dataset. It also generalized remarkably good, especially when the model had been trained on KneeMRI. The presented framework generated at least 2.1 times less carbon emissions and consumed at least 2.6 times less energy, when compared with SOTA. The integration of aleatoric semantic uncertainty-based scores into a novelty detection framework, when combined with the use of lightweight OD and timeseries classification models, have the potential to revolutionize the MRI-based injury detection by setting a new precedent in diagnostic precision, speed and environmental sustainability. Our resource-efficient framework offers potential for widespread application.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"117 ","pages":"Article 102424"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0895611124001010/pdfft?md5=08030d7bf6b1d50cc1742401e8b8a65d&pid=1-s2.0-S0895611124001010-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Economical hybrid novelty detection leveraging global aleatoric semantic uncertainty for enhanced MRI-based ACL tear diagnosis\",\"authors\":\"Athanasios Siouras , Serafeim Moustakidis , George Chalatsis , Tuan Aqeel Bohoran , Michael Hantes , Marianna Vlychou , Sotiris Tasoulis , Archontis Giannakidis , Dimitrios Tsaopoulos\",\"doi\":\"10.1016/j.compmedimag.2024.102424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents an innovative hybrid deep learning (DL) framework that reformulates the sagittal MRI-based anterior cruciate ligament (ACL) tear classification task as a novelty detection problem to tackle class imbalance. We introduce a highly discriminative novelty score, which leverages the aleatoric semantic uncertainty as this is modeled in the class scores outputted by the YOLOv5-nano object detection (OD) model. To account for tissue continuity, we propose using the global scores (probability vector) when the model is applied to the entire sagittal sequence. The second module of the proposed pipeline constitutes the MINIROCKET timeseries classification model for determining whether a knee has an ACL tear. To better evaluate the generalization capabilities of our approach, we also carry out cross-database testing involving two public databases (KneeMRI and MRNet) and a validation-only database from University General Hospital of Larissa, Greece. Our method consistently outperformed (p-value<0.05) the state-of-the-art (SOTA) approaches on the KneeMRI dataset and achieved better accuracy and sensitivity on the MRNet dataset. It also generalized remarkably good, especially when the model had been trained on KneeMRI. The presented framework generated at least 2.1 times less carbon emissions and consumed at least 2.6 times less energy, when compared with SOTA. The integration of aleatoric semantic uncertainty-based scores into a novelty detection framework, when combined with the use of lightweight OD and timeseries classification models, have the potential to revolutionize the MRI-based injury detection by setting a new precedent in diagnostic precision, speed and environmental sustainability. Our resource-efficient framework offers potential for widespread application.</p></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"117 \",\"pages\":\"Article 102424\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0895611124001010/pdfft?md5=08030d7bf6b1d50cc1742401e8b8a65d&pid=1-s2.0-S0895611124001010-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124001010\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Economical hybrid novelty detection leveraging global aleatoric semantic uncertainty for enhanced MRI-based ACL tear diagnosis
This study presents an innovative hybrid deep learning (DL) framework that reformulates the sagittal MRI-based anterior cruciate ligament (ACL) tear classification task as a novelty detection problem to tackle class imbalance. We introduce a highly discriminative novelty score, which leverages the aleatoric semantic uncertainty as this is modeled in the class scores outputted by the YOLOv5-nano object detection (OD) model. To account for tissue continuity, we propose using the global scores (probability vector) when the model is applied to the entire sagittal sequence. The second module of the proposed pipeline constitutes the MINIROCKET timeseries classification model for determining whether a knee has an ACL tear. To better evaluate the generalization capabilities of our approach, we also carry out cross-database testing involving two public databases (KneeMRI and MRNet) and a validation-only database from University General Hospital of Larissa, Greece. Our method consistently outperformed (p-value<0.05) the state-of-the-art (SOTA) approaches on the KneeMRI dataset and achieved better accuracy and sensitivity on the MRNet dataset. It also generalized remarkably good, especially when the model had been trained on KneeMRI. The presented framework generated at least 2.1 times less carbon emissions and consumed at least 2.6 times less energy, when compared with SOTA. The integration of aleatoric semantic uncertainty-based scores into a novelty detection framework, when combined with the use of lightweight OD and timeseries classification models, have the potential to revolutionize the MRI-based injury detection by setting a new precedent in diagnostic precision, speed and environmental sustainability. Our resource-efficient framework offers potential for widespread application.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.