{"title":"激光在硅中嵌入纳米级器件","authors":"Edd Gent","doi":"10.1109/MSPEC.2024.10669256","DOIUrl":null,"url":null,"abstract":"A team of engineers at Bilkent University, in Ankara, Türkiye, has built a nanoscale optical element not on top of a silicon wafer, but rather in a layer below the surface. To achieve this, they used a special type of laser known as a Bessel beam, whose light can pass through the surface of a wafer and interact with the silicon below. Because the Bessel beam's light doesn't diffract, it's now possible to create two-dimensional structures inside the silicon as small as 100 nanometers.","PeriodicalId":13249,"journal":{"name":"IEEE Spectrum","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669256","citationCount":"0","resultStr":"{\"title\":\"Laser Embeds Nanoscale Device in Silicon\",\"authors\":\"Edd Gent\",\"doi\":\"10.1109/MSPEC.2024.10669256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A team of engineers at Bilkent University, in Ankara, Türkiye, has built a nanoscale optical element not on top of a silicon wafer, but rather in a layer below the surface. To achieve this, they used a special type of laser known as a Bessel beam, whose light can pass through the surface of a wafer and interact with the silicon below. Because the Bessel beam's light doesn't diffract, it's now possible to create two-dimensional structures inside the silicon as small as 100 nanometers.\",\"PeriodicalId\":13249,\"journal\":{\"name\":\"IEEE Spectrum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669256\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Spectrum\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669256/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Spectrum","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669256/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A team of engineers at Bilkent University, in Ankara, Türkiye, has built a nanoscale optical element not on top of a silicon wafer, but rather in a layer below the surface. To achieve this, they used a special type of laser known as a Bessel beam, whose light can pass through the surface of a wafer and interact with the silicon below. Because the Bessel beam's light doesn't diffract, it's now possible to create two-dimensional structures inside the silicon as small as 100 nanometers.
期刊介绍:
IEEE Spectrum Magazine, the flagship publication of the IEEE, explores the development, applications and implications of new technologies. It anticipates trends in engineering, science, and technology, and provides a forum for understanding, discussion and leadership in these areas.
IEEE Spectrum is the world''s leading engineering and scientific magazine. Read by over 300,000 engineers worldwide, Spectrum provides international coverage of all technical issues and advances in computers, communications, and electronics. Written in clear, concise language for the non-specialist, Spectrum''s high editorial standards and worldwide resources ensure technical accuracy and state-of-the-art relevance.