用于 W 波段 ROF 系统中旋转 PS 64QAM OFDM 的分组 ANN 均衡器

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Photonics Technology Letters Pub Date : 2024-08-30 DOI:10.1109/LPT.2024.3449922
Jing He;Jing He
{"title":"用于 W 波段 ROF 系统中旋转 PS 64QAM OFDM 的分组 ANN 均衡器","authors":"Jing He;Jing He","doi":"10.1109/LPT.2024.3449922","DOIUrl":null,"url":null,"abstract":"In the letter, a grouped artificial neural network (G-ANN) based equalizer is proposed and experimentally demonstrated for the rotated and probabilistically shaped 64 quadrature amplitude modulation (RPS 64QAM) orthogonal frequency division multiplexing (OFDM) in W-band radio-over-fiber (ROF) system. PS OFDM can achieve capacity improvement and flexible rate adaptability. Then, the rotated QAM scheme is applied after PS to increase the noise tolerance and resist selective frequency fading in ROF system. In addition, a deep learning equalizer using G-ANN is proposed for RPS 64QAM OFDM. The numerical analysis indicates that the proposed G-ANN equalizer has a better performance and lower training overhead compared with the ANN equalizer. The experimental results show that, after 20 km standard single mode fiber (SSMF) and 1 m wireless transmission, compared to RPS without and with ANN equalizer, the sensitivity improvement of RPS OFDM with the proposed G-ANN equalizer can achieve 1.5dB and 0.6dB at BER of \n<inline-formula> <tex-math>$10^{-5}$ </tex-math></inline-formula>\n. Meanwhile, the receiver sensitivity of RPS can be improved 1.6 dB compared with PS at normalized generalized mutual information (NGMI) of 0.83.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"36 19","pages":"1165-1168"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Grouped-ANN Equalizer for the Rotated PS 64QAM OFDM in W-Band ROF System\",\"authors\":\"Jing He;Jing He\",\"doi\":\"10.1109/LPT.2024.3449922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the letter, a grouped artificial neural network (G-ANN) based equalizer is proposed and experimentally demonstrated for the rotated and probabilistically shaped 64 quadrature amplitude modulation (RPS 64QAM) orthogonal frequency division multiplexing (OFDM) in W-band radio-over-fiber (ROF) system. PS OFDM can achieve capacity improvement and flexible rate adaptability. Then, the rotated QAM scheme is applied after PS to increase the noise tolerance and resist selective frequency fading in ROF system. In addition, a deep learning equalizer using G-ANN is proposed for RPS 64QAM OFDM. The numerical analysis indicates that the proposed G-ANN equalizer has a better performance and lower training overhead compared with the ANN equalizer. The experimental results show that, after 20 km standard single mode fiber (SSMF) and 1 m wireless transmission, compared to RPS without and with ANN equalizer, the sensitivity improvement of RPS OFDM with the proposed G-ANN equalizer can achieve 1.5dB and 0.6dB at BER of \\n<inline-formula> <tex-math>$10^{-5}$ </tex-math></inline-formula>\\n. Meanwhile, the receiver sensitivity of RPS can be improved 1.6 dB compared with PS at normalized generalized mutual information (NGMI) of 0.83.\",\"PeriodicalId\":13065,\"journal\":{\"name\":\"IEEE Photonics Technology Letters\",\"volume\":\"36 19\",\"pages\":\"1165-1168\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10660541/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10660541/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

信中提出了一种基于分组人工神经网络(G-ANN)的均衡器,并对 W 波段光纤射频(ROF)系统中的旋转概率64正交振幅调制(RPS 64QAM)正交频分复用(OFDM)进行了实验验证。PS OFDM 可实现容量提升和灵活的速率适应性。然后,在 PS 之后应用旋转 QAM 方案,以提高 ROF 系统的噪声容限和抗选择性频率衰落能力。此外,还针对 RPS 64QAM OFDM 提出了一种使用 G-ANN 的深度学习均衡器。数值分析表明,与 ANN 均衡器相比,所提出的 G-ANN 均衡器具有更好的性能和更低的训练开销。实验结果表明,经过 20 千米标准单模光纤(SSMF)和 1 米无线传输后,在误码率为$10^{-5}$时,使用 G-ANN 均衡器的 RPS OFDM 接收机灵敏度与不使用 ANN 均衡器和使用 ANN 均衡器的 RPS OFDM 接收机灵敏度相比,分别提高了 1.5dB 和 0.6dB 。同时,在归一化广义互信息(NGMI)为 0.83 时,RPS 的接收灵敏度比 PS 提高了 1.6 分贝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Grouped-ANN Equalizer for the Rotated PS 64QAM OFDM in W-Band ROF System
In the letter, a grouped artificial neural network (G-ANN) based equalizer is proposed and experimentally demonstrated for the rotated and probabilistically shaped 64 quadrature amplitude modulation (RPS 64QAM) orthogonal frequency division multiplexing (OFDM) in W-band radio-over-fiber (ROF) system. PS OFDM can achieve capacity improvement and flexible rate adaptability. Then, the rotated QAM scheme is applied after PS to increase the noise tolerance and resist selective frequency fading in ROF system. In addition, a deep learning equalizer using G-ANN is proposed for RPS 64QAM OFDM. The numerical analysis indicates that the proposed G-ANN equalizer has a better performance and lower training overhead compared with the ANN equalizer. The experimental results show that, after 20 km standard single mode fiber (SSMF) and 1 m wireless transmission, compared to RPS without and with ANN equalizer, the sensitivity improvement of RPS OFDM with the proposed G-ANN equalizer can achieve 1.5dB and 0.6dB at BER of $10^{-5}$ . Meanwhile, the receiver sensitivity of RPS can be improved 1.6 dB compared with PS at normalized generalized mutual information (NGMI) of 0.83.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
期刊最新文献
High Power Multi-Junction 808 nm Vertical Cavity Surface Emitting Lasers With High Efficiency Externally Coated Dual-Channel Photonic Crystal Fiber for Bio-Temperature Sensing Optimized Photonic-Electronic Co-Design for Hybrid Integrated Silicon-Based Optical Transmitters A Large-Signal SPICE Model for VCSEL Based on Piece-Wise Linear RLC Elements Demonstration of Optically Connected Disaggregated Memory With Hitless Wavelength-Selective Switch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1