基于自动奇异谱分析和量子卷积神经网络的肌电图信号 ALS 检测框架

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-08-26 DOI:10.1109/LSENS.2024.3449369
Kiran Kumar Makam;Vivek Kumar Singh;Ram Bilas Pachori
{"title":"基于自动奇异谱分析和量子卷积神经网络的肌电图信号 ALS 检测框架","authors":"Kiran Kumar Makam;Vivek Kumar Singh;Ram Bilas Pachori","doi":"10.1109/LSENS.2024.3449369","DOIUrl":null,"url":null,"abstract":"Electromyogram (EMG) signals are recordings of the electrical activity in muscles, which are studied due to their informative nature regarding neuromuscular disorders. Analysis of EMG signals is invaluable for identifying various neuromuscular conditions. In this letter, an automatic singular spectrum analysis (Auto-SSA) and quantum convolutional neural network (QCNN)-based framework is proposed for the detection of amyotrophic lateral sclerosis (ALS) using EMG signals. The Auto-SSA effectively decomposes the EMG signals into reconstructed components, from which the particle swarm optimization extracts the most significant features. The QCNN classifies the extracted features for efficient ALS detection. The proposed framework outperforms the compared state-of-the-art ALS detection frameworks, achieving a testing accuracy of 98.50%. With the obtained performance, the proposed framework could be a valuable diagnostic tool for ALS neuromuscular conditions.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 9","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ALS Detection Framework Based on Automatic Singular Spectrum Analysis and Quantum Convolutional Neural Network From EMG Signals\",\"authors\":\"Kiran Kumar Makam;Vivek Kumar Singh;Ram Bilas Pachori\",\"doi\":\"10.1109/LSENS.2024.3449369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromyogram (EMG) signals are recordings of the electrical activity in muscles, which are studied due to their informative nature regarding neuromuscular disorders. Analysis of EMG signals is invaluable for identifying various neuromuscular conditions. In this letter, an automatic singular spectrum analysis (Auto-SSA) and quantum convolutional neural network (QCNN)-based framework is proposed for the detection of amyotrophic lateral sclerosis (ALS) using EMG signals. The Auto-SSA effectively decomposes the EMG signals into reconstructed components, from which the particle swarm optimization extracts the most significant features. The QCNN classifies the extracted features for efficient ALS detection. The proposed framework outperforms the compared state-of-the-art ALS detection frameworks, achieving a testing accuracy of 98.50%. With the obtained performance, the proposed framework could be a valuable diagnostic tool for ALS neuromuscular conditions.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 9\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10646470/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10646470/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

肌电图(EMG)信号是肌肉电活动的记录,由于其对神经肌肉疾病的信息量大,因此被广泛研究。肌电图信号分析对于识别各种神经肌肉疾病非常有价值。在这封信中,我们提出了一种基于自动奇异频谱分析(Auto-SSA)和量子卷积神经网络(QCNN)的框架,用于利用肌电图信号检测肌萎缩性脊髓侧索硬化症(ALS)。Auto-SSA 能有效地将肌电信号分解为重建分量,然后通过粒子群优化从中提取最重要的特征。QCNN 对提取的特征进行分类,从而实现高效的 ALS 检测。所提出的框架优于同类最先进的 ALS 检测框架,测试准确率达到 98.50%。鉴于所取得的性能,所提出的框架可以成为 ALS 神经肌肉病症的重要诊断工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ALS Detection Framework Based on Automatic Singular Spectrum Analysis and Quantum Convolutional Neural Network From EMG Signals
Electromyogram (EMG) signals are recordings of the electrical activity in muscles, which are studied due to their informative nature regarding neuromuscular disorders. Analysis of EMG signals is invaluable for identifying various neuromuscular conditions. In this letter, an automatic singular spectrum analysis (Auto-SSA) and quantum convolutional neural network (QCNN)-based framework is proposed for the detection of amyotrophic lateral sclerosis (ALS) using EMG signals. The Auto-SSA effectively decomposes the EMG signals into reconstructed components, from which the particle swarm optimization extracts the most significant features. The QCNN classifies the extracted features for efficient ALS detection. The proposed framework outperforms the compared state-of-the-art ALS detection frameworks, achieving a testing accuracy of 98.50%. With the obtained performance, the proposed framework could be a valuable diagnostic tool for ALS neuromuscular conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
PPY-fMWCNT Nanocomposite-Based Chemicapacitive Biosensor for Ultrasensitive Detection of TBI-Specific GFAP Biomarker in Human Plasma Front Cover IEEE Sensors Council Information Table of Contents IEEE Sensors Letters Subject Categories for Article Numbering Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1