用于剪枝数字预失真模型的增强型二元粒子群优化技术

0 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE microwave and wireless technology letters Pub Date : 2024-07-11 DOI:10.1109/LMWT.2024.3411026
Kun Gao;Yufeng Zhang;Xin Liu;Jiewen Wang;Qingyue Chen;Xu Shi;Wenhua Chen;Haigang Feng;Zhenghe Feng;Fadhel M. Ghannouchi
{"title":"用于剪枝数字预失真模型的增强型二元粒子群优化技术","authors":"Kun Gao;Yufeng Zhang;Xin Liu;Jiewen Wang;Qingyue Chen;Xu Shi;Wenhua Chen;Haigang Feng;Zhenghe Feng;Fadhel M. Ghannouchi","doi":"10.1109/LMWT.2024.3411026","DOIUrl":null,"url":null,"abstract":"In this letter, we propose an enhanced binary particle swarm optimization (PSO) algorithm with symmetrical uncertainty (EBPSO-SU) to reduce the complexity of the digital predistortion (DPD) model. In millimeter-wave (mm-wave) communication systems, the power consumption issue is notable due to the considerable number of redundant terms in the DPD models. To prune these terms, the correlation between the label (output signal) and features (basic function terms) is first leveraged for swarm initialization. Subsequently, the EBPSO algorithm, incorporating a modified velocity-to-position mapping formula, is employed to identify key terms of the model. Measurement results from a 28 GHz power amplifier operating with a 200 MHz input signal illustrate that the proposed pruning algorithm can reduce the complexity of the full generalized memory polynomial (GMP) model by 90% while ensuring equivalent performance.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 9","pages":"1119-1122"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Enhanced Binary Particle Swarm Optimization for Pruning Digital Predistortion Models\",\"authors\":\"Kun Gao;Yufeng Zhang;Xin Liu;Jiewen Wang;Qingyue Chen;Xu Shi;Wenhua Chen;Haigang Feng;Zhenghe Feng;Fadhel M. Ghannouchi\",\"doi\":\"10.1109/LMWT.2024.3411026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we propose an enhanced binary particle swarm optimization (PSO) algorithm with symmetrical uncertainty (EBPSO-SU) to reduce the complexity of the digital predistortion (DPD) model. In millimeter-wave (mm-wave) communication systems, the power consumption issue is notable due to the considerable number of redundant terms in the DPD models. To prune these terms, the correlation between the label (output signal) and features (basic function terms) is first leveraged for swarm initialization. Subsequently, the EBPSO algorithm, incorporating a modified velocity-to-position mapping formula, is employed to identify key terms of the model. Measurement results from a 28 GHz power amplifier operating with a 200 MHz input signal illustrate that the proposed pruning algorithm can reduce the complexity of the full generalized memory polynomial (GMP) model by 90% while ensuring equivalent performance.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"34 9\",\"pages\":\"1119-1122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10595460/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10595460/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们提出了一种具有对称不确定性的增强型二进制粒子群优化(PSO)算法(EBPSO-SU),以降低数字预失真(DPD)模型的复杂性。在毫米波(mm-wave)通信系统中,由于 DPD 模型中存在大量冗余项,功耗问题十分突出。为了剪除这些项,首先利用标签(输出信号)和特征(基本函数项)之间的相关性进行蜂群初始化。随后,采用 EBPSO 算法,结合修改后的速度到位置映射公式,识别出模型的关键项。对使用 200 MHz 输入信号工作的 28 GHz 功率放大器的测量结果表明,所提出的剪枝算法可将完整广义记忆多项式 (GMP) 模型的复杂度降低 90%,同时确保同等性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Enhanced Binary Particle Swarm Optimization for Pruning Digital Predistortion Models
In this letter, we propose an enhanced binary particle swarm optimization (PSO) algorithm with symmetrical uncertainty (EBPSO-SU) to reduce the complexity of the digital predistortion (DPD) model. In millimeter-wave (mm-wave) communication systems, the power consumption issue is notable due to the considerable number of redundant terms in the DPD models. To prune these terms, the correlation between the label (output signal) and features (basic function terms) is first leveraged for swarm initialization. Subsequently, the EBPSO algorithm, incorporating a modified velocity-to-position mapping formula, is employed to identify key terms of the model. Measurement results from a 28 GHz power amplifier operating with a 200 MHz input signal illustrate that the proposed pruning algorithm can reduce the complexity of the full generalized memory polynomial (GMP) model by 90% while ensuring equivalent performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Open Access Publishing IEEE Microwave and Wireless Technology Letters publication IEEE Microwave and Wireless Technology Letters Information for Authors TechRxiv: Share Your Preprint Research with the World
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1