{"title":"利用米勒电容消除的宽带输入阻抗不变有源移相器用于 5G 通信","authors":"Yongjun Kwon;Songcheol Hong","doi":"10.1109/LMWT.2024.3411602","DOIUrl":null,"url":null,"abstract":"A wideband input impedance-invariant active phase shifter for millimeter-wave 5G communication is proposed and implemented in a 28-nm CMOS process. It consists of an IQ generator, a Gilbert cell-based vector summer, and a digital-to-analog converter (DAC). Input impedance variations of the vector summer according to the states of the phase shifter, which give rise to IQ mismatches, are substantially suppressed in a wide bandwidth. This is effectively achieved by introducing cross-coupled neutralization capacitors to cancel out the Miller capacitors (\n<inline-formula> <tex-math>$C_{\\text {gd}}$ </tex-math></inline-formula>\n) of the input transistors of the vector summing circuit. The implemented phase shifter shows a maximum gain of 0.613 dB at 24.9 GHz and 3-dB bandwidths of 21.7–28.6 GHz (27.4%). The root mean square (rms) phase and gain errors are measured to be less than 1.5° and 0.25 dB, respectively, for 6-bit 360° phase and 4-bit 10-dB gain controls. The core area and power consumption are \n<inline-formula> <tex-math>$0.47~\\text {mm}^{2}$ </tex-math></inline-formula>\n and 14.4 mW, respectively.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 9","pages":"1091-1094"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wideband Input Impedance-Invariant Active Phase Shifter Using Miller Capacitor Cancellation for 5G Communication\",\"authors\":\"Yongjun Kwon;Songcheol Hong\",\"doi\":\"10.1109/LMWT.2024.3411602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wideband input impedance-invariant active phase shifter for millimeter-wave 5G communication is proposed and implemented in a 28-nm CMOS process. It consists of an IQ generator, a Gilbert cell-based vector summer, and a digital-to-analog converter (DAC). Input impedance variations of the vector summer according to the states of the phase shifter, which give rise to IQ mismatches, are substantially suppressed in a wide bandwidth. This is effectively achieved by introducing cross-coupled neutralization capacitors to cancel out the Miller capacitors (\\n<inline-formula> <tex-math>$C_{\\\\text {gd}}$ </tex-math></inline-formula>\\n) of the input transistors of the vector summing circuit. The implemented phase shifter shows a maximum gain of 0.613 dB at 24.9 GHz and 3-dB bandwidths of 21.7–28.6 GHz (27.4%). The root mean square (rms) phase and gain errors are measured to be less than 1.5° and 0.25 dB, respectively, for 6-bit 360° phase and 4-bit 10-dB gain controls. The core area and power consumption are \\n<inline-formula> <tex-math>$0.47~\\\\text {mm}^{2}$ </tex-math></inline-formula>\\n and 14.4 mW, respectively.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"34 9\",\"pages\":\"1091-1094\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10638628/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10638628/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Wideband Input Impedance-Invariant Active Phase Shifter Using Miller Capacitor Cancellation for 5G Communication
A wideband input impedance-invariant active phase shifter for millimeter-wave 5G communication is proposed and implemented in a 28-nm CMOS process. It consists of an IQ generator, a Gilbert cell-based vector summer, and a digital-to-analog converter (DAC). Input impedance variations of the vector summer according to the states of the phase shifter, which give rise to IQ mismatches, are substantially suppressed in a wide bandwidth. This is effectively achieved by introducing cross-coupled neutralization capacitors to cancel out the Miller capacitors (
$C_{\text {gd}}$
) of the input transistors of the vector summing circuit. The implemented phase shifter shows a maximum gain of 0.613 dB at 24.9 GHz and 3-dB bandwidths of 21.7–28.6 GHz (27.4%). The root mean square (rms) phase and gain errors are measured to be less than 1.5° and 0.25 dB, respectively, for 6-bit 360° phase and 4-bit 10-dB gain controls. The core area and power consumption are
$0.47~\text {mm}^{2}$
and 14.4 mW, respectively.