Mikiko Ito;Dahea Han;Tae-Hyung Kim;Young-Tae Kim;Sungeun Lee;Jeongtae Soh;Young-Jun Jung;Byungkee Lee
{"title":"使用移动式 CNT 管阵列进行四肢扫描的移动式数字断层扫描系统性能评估","authors":"Mikiko Ito;Dahea Han;Tae-Hyung Kim;Young-Tae Kim;Sungeun Lee;Jeongtae Soh;Young-Jun Jung;Byungkee Lee","doi":"10.1109/TRPMS.2024.3408870","DOIUrl":null,"url":null,"abstract":"Digital tomosynthesis (DTS) can enhance diagnostic accuracy by providing 3-D volume images with a remarkably low-X-ray dose. The aim of this study is to provide an initial assessment of the image quality and the X-ray dose for a mobile DTS system employing a moving carbon-nanotube (CNT)-based digital X-ray source array and a fixed detector for extremity scans. This design allows to reduce the source-to-detector distance (SDD) to only 400 mm, thereby enabling a compact and highly mobile system. We first measured the entrance surface dose (ESD), which is the sum of the X-ray dose irradiated from individual projections using a dosimeter placed at the center of the X-ray detector. The ESDs obtained for hand, foot, and knee scan configurations were 0.15, 0.22, and 0.43 mGy, respectively, which were comparable to those obtained from 2-D radiography exposures. For the evaluation of its reconstructed image quality, the in-plane modulation transfer function (MTF), \n<italic>Z</i>\n-resolution, geometry distortion, and image homogeneity were assessed by utilizing a wire-phantom, sphere-phantom, and PMMA phantoms. The reconstructed images of hand, ankle and knee phantoms were evaluated qualitatively. The results of the evaluation demonstrate the successful development of the mobile DTS system proposed in this article.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 7","pages":"826-838"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of a Mobile Digital Tomosynthesis System Using a Moving CNT-Based Tube Array for Extremity Scans\",\"authors\":\"Mikiko Ito;Dahea Han;Tae-Hyung Kim;Young-Tae Kim;Sungeun Lee;Jeongtae Soh;Young-Jun Jung;Byungkee Lee\",\"doi\":\"10.1109/TRPMS.2024.3408870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital tomosynthesis (DTS) can enhance diagnostic accuracy by providing 3-D volume images with a remarkably low-X-ray dose. The aim of this study is to provide an initial assessment of the image quality and the X-ray dose for a mobile DTS system employing a moving carbon-nanotube (CNT)-based digital X-ray source array and a fixed detector for extremity scans. This design allows to reduce the source-to-detector distance (SDD) to only 400 mm, thereby enabling a compact and highly mobile system. We first measured the entrance surface dose (ESD), which is the sum of the X-ray dose irradiated from individual projections using a dosimeter placed at the center of the X-ray detector. The ESDs obtained for hand, foot, and knee scan configurations were 0.15, 0.22, and 0.43 mGy, respectively, which were comparable to those obtained from 2-D radiography exposures. For the evaluation of its reconstructed image quality, the in-plane modulation transfer function (MTF), \\n<italic>Z</i>\\n-resolution, geometry distortion, and image homogeneity were assessed by utilizing a wire-phantom, sphere-phantom, and PMMA phantoms. The reconstructed images of hand, ankle and knee phantoms were evaluated qualitatively. The results of the evaluation demonstrate the successful development of the mobile DTS system proposed in this article.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"8 7\",\"pages\":\"826-838\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10551420/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10551420/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
数字断层扫描(DTS)能以极低的 X 射线剂量提供三维容积图像,从而提高诊断的准确性。本研究的目的是对采用移动碳纳米管(CNT)数字 X 射线源阵列和固定探测器进行四肢扫描的移动 DTS 系统的图像质量和 X 射线剂量进行初步评估。这种设计可将光源到探测器的距离(SDD)缩短到仅 400 毫米,从而实现了系统的紧凑性和高度移动性。我们首先测量了入口表面剂量(ESD),即使用放置在 X 射线探测器中心的剂量计测量从单个投影照射的 X 射线剂量的总和。手部、足部和膝部扫描配置获得的 ESD 分别为 0.15、0.22 和 0.43 mGy,与二维放射摄影曝光获得的 ESD 相当。为了评估其重建图像的质量,利用线状模型、球状模型和 PMMA 模型对平面内调制传递函数(MTF)、Z 分辨率、几何失真和图像均匀性进行了评估。对手部、踝关节和膝关节模型的重建图像进行了定性评估。评估结果表明,本文提出的移动 DTS 系统开发成功。
Performance Evaluation of a Mobile Digital Tomosynthesis System Using a Moving CNT-Based Tube Array for Extremity Scans
Digital tomosynthesis (DTS) can enhance diagnostic accuracy by providing 3-D volume images with a remarkably low-X-ray dose. The aim of this study is to provide an initial assessment of the image quality and the X-ray dose for a mobile DTS system employing a moving carbon-nanotube (CNT)-based digital X-ray source array and a fixed detector for extremity scans. This design allows to reduce the source-to-detector distance (SDD) to only 400 mm, thereby enabling a compact and highly mobile system. We first measured the entrance surface dose (ESD), which is the sum of the X-ray dose irradiated from individual projections using a dosimeter placed at the center of the X-ray detector. The ESDs obtained for hand, foot, and knee scan configurations were 0.15, 0.22, and 0.43 mGy, respectively, which were comparable to those obtained from 2-D radiography exposures. For the evaluation of its reconstructed image quality, the in-plane modulation transfer function (MTF),
Z
-resolution, geometry distortion, and image homogeneity were assessed by utilizing a wire-phantom, sphere-phantom, and PMMA phantoms. The reconstructed images of hand, ankle and knee phantoms were evaluated qualitatively. The results of the evaluation demonstrate the successful development of the mobile DTS system proposed in this article.