高效量子架构搜索的持续演化

IF 5.8 2区 物理与天体物理 Q1 OPTICS EPJ Quantum Technology Pub Date : 2024-09-06 DOI:10.1140/epjqt/s40507-024-00265-7
QuanGong Ma, ChaoLong Hao, XuKui Yang, LongLong Qian, Hao Zhang, NianWen Si, MinChen Xu, Dan Qu
{"title":"高效量子架构搜索的持续演化","authors":"QuanGong Ma,&nbsp;ChaoLong Hao,&nbsp;XuKui Yang,&nbsp;LongLong Qian,&nbsp;Hao Zhang,&nbsp;NianWen Si,&nbsp;MinChen Xu,&nbsp;Dan Qu","doi":"10.1140/epjqt/s40507-024-00265-7","DOIUrl":null,"url":null,"abstract":"<div><p>Variational quantum algorithms (VQAs) have been successfully applied to quantum approximate optimization algorithms, variational quantum compiling, and quantum machine learning models. The performance of VQAs is significantly influenced by the architecture of parameterized quantum circuits (PQCs). Quantum architecture search aims to automatically discover high-performance quantum circuits for specific VQA tasks. Quantum architecture search algorithms that utilize both SuperCircuit training and a parameter-sharing approach can save computational resources. If we directly follow the parameter-sharing approach, the SuperCircuit has to be trained to compensate for the worse search space. To address the challenges posed by the worse search space, we introduce an optimization strategy known as the efficient continuous evolutionary approach using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Then, we leverage prior information (symmetric property) designing Structure Symmetric Pruning for removing redundant gates of the searched ansatz. Experiments show that the efficient continuous evolutionary approach can search for more quantum architectures with better performance; the number of high-performance ansatzes obtained by our method is 10% higher than that in the literature (Du et al. in npj Quantum Inf. 8:62, 2022). The application of Structure Symmetric Pruning effectively reduces the number of parameters in quantum circuits without compromising their performance significantly. In binary classification tasks, the pruned quantum circuits exhibit an average accuracy reduction of 0.044 compared to their unpruned counterparts.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00265-7","citationCount":"0","resultStr":"{\"title\":\"Continuous evolution for efficient quantum architecture search\",\"authors\":\"QuanGong Ma,&nbsp;ChaoLong Hao,&nbsp;XuKui Yang,&nbsp;LongLong Qian,&nbsp;Hao Zhang,&nbsp;NianWen Si,&nbsp;MinChen Xu,&nbsp;Dan Qu\",\"doi\":\"10.1140/epjqt/s40507-024-00265-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Variational quantum algorithms (VQAs) have been successfully applied to quantum approximate optimization algorithms, variational quantum compiling, and quantum machine learning models. The performance of VQAs is significantly influenced by the architecture of parameterized quantum circuits (PQCs). Quantum architecture search aims to automatically discover high-performance quantum circuits for specific VQA tasks. Quantum architecture search algorithms that utilize both SuperCircuit training and a parameter-sharing approach can save computational resources. If we directly follow the parameter-sharing approach, the SuperCircuit has to be trained to compensate for the worse search space. To address the challenges posed by the worse search space, we introduce an optimization strategy known as the efficient continuous evolutionary approach using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Then, we leverage prior information (symmetric property) designing Structure Symmetric Pruning for removing redundant gates of the searched ansatz. Experiments show that the efficient continuous evolutionary approach can search for more quantum architectures with better performance; the number of high-performance ansatzes obtained by our method is 10% higher than that in the literature (Du et al. in npj Quantum Inf. 8:62, 2022). The application of Structure Symmetric Pruning effectively reduces the number of parameters in quantum circuits without compromising their performance significantly. In binary classification tasks, the pruned quantum circuits exhibit an average accuracy reduction of 0.044 compared to their unpruned counterparts.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00265-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00265-7\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00265-7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

变量子算法(VQAs)已成功应用于量子近似优化算法、变量子编译和量子机器学习模型。参数化量子电路(PQC)的架构对 VQAs 的性能影响很大。量子架构搜索旨在为特定的 VQA 任务自动发现高性能量子电路。同时利用超级电路训练和参数共享方法的量子架构搜索算法可以节省计算资源。如果我们直接采用参数共享方法,就必须对超级电路进行训练,以弥补搜索空间的不足。为了应对搜索空间变小带来的挑战,我们引入了一种优化策略,即使用非优势排序遗传算法-II(NSGA-II)的高效连续进化方法。然后,我们利用先验信息(对称属性)设计了结构对称剪枝法,用于去除搜索解析式中的冗余门。实验表明,高效的连续进化方法可以搜索到更多性能更优的量子架构;我们的方法获得的高性能安萨特的数量比文献中的高出 10%(Du 等人,npj Quantum Inf.)结构对称剪枝法的应用有效地减少了量子电路中的参数数量,而不会明显影响其性能。在二进制分类任务中,剪枝后的量子电路与未剪枝的量子电路相比,平均准确率降低了 0.044。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continuous evolution for efficient quantum architecture search

Variational quantum algorithms (VQAs) have been successfully applied to quantum approximate optimization algorithms, variational quantum compiling, and quantum machine learning models. The performance of VQAs is significantly influenced by the architecture of parameterized quantum circuits (PQCs). Quantum architecture search aims to automatically discover high-performance quantum circuits for specific VQA tasks. Quantum architecture search algorithms that utilize both SuperCircuit training and a parameter-sharing approach can save computational resources. If we directly follow the parameter-sharing approach, the SuperCircuit has to be trained to compensate for the worse search space. To address the challenges posed by the worse search space, we introduce an optimization strategy known as the efficient continuous evolutionary approach using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Then, we leverage prior information (symmetric property) designing Structure Symmetric Pruning for removing redundant gates of the searched ansatz. Experiments show that the efficient continuous evolutionary approach can search for more quantum architectures with better performance; the number of high-performance ansatzes obtained by our method is 10% higher than that in the literature (Du et al. in npj Quantum Inf. 8:62, 2022). The application of Structure Symmetric Pruning effectively reduces the number of parameters in quantum circuits without compromising their performance significantly. In binary classification tasks, the pruned quantum circuits exhibit an average accuracy reduction of 0.044 compared to their unpruned counterparts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
期刊最新文献
On the randomness of time ordered quantum measurements A new quantum solution to blind millionaires’ problem without an honest third party An investigation of errors in ellipse-fitting for cold-atom interferometers Numerical model of N-level cascade systems for atomic Radio Frequency sensing applications Electromagnetic side-channel attack risk assessment on a practical quantum-key-distribution receiver based on multi-class classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1