开发镁基储氢反应器:从材料合成到反应器优化

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS Energy Conversion and Management Pub Date : 2024-09-06 DOI:10.1016/j.enconman.2024.118993
{"title":"开发镁基储氢反应器:从材料合成到反应器优化","authors":"","doi":"10.1016/j.enconman.2024.118993","DOIUrl":null,"url":null,"abstract":"<div><p>Solid alloys hydrogen storage is one of the most promising large-scale hydrogen storage technologies. However, the uneven internal heat distribution greatly affects its hydrogen storage efficiency. This paper starts from the synthesis of Mg-Ni-La-xMn (x = 0, 1, 2, 3, 4 wt%) hydrogen storage alloys. Models of the hydrogen storage reactor are established and validated by experimental results. Three hydrogen reactor types, namely the single-tube reactor (SITR), the return-tube reactor (RETR) and the spiral-tube reactor (SPTR), are designed and compared from hydrogen absorption and desorption rates and temperature filed uniformity. Structural and operation parameters are further optimized. It is found that main components of the Mg-Ni-La-xMn alloys are Mg, Mg<sub>2</sub>Ni, LaNi<sub>5</sub>, LaMg<sub>12</sub> and MgNi<sub>0.8</sub>Mn<sub>0.2</sub>. Introducing Mn content can not only increase the maximum hydrogen absorption, but also accelerate the hydrogen absorption rates. The Mg-Ni-La-2Mn alloy has the best hydrogen absorption and desorption performance. Hydrogen storage reactor performance comparison with Mg-Ni-La-2Mn alloy shows the SITR can hardly reach saturation absorption, whose hydrogen absorption is only 3.1 wt%. The maximum temperature of the SPTR is 27 K higher than that of the RETR during hydrogen absorption. The optimal tube diameter and spacing of the RETR are 6 mm and 8 mm, respectively. The practical hydrogen absorption capacity of Mg-Ni-La-2Mn alloy in the RETR reaches 6.2 wt%. The optimal hydrogen supply pressure in the RETR is 0.8 MPa during hydrogen absorption. The optimal thermal oil velocities in the RETR are 2 m/s and 1 m/s for hydrogen absorption and desorption respectively.</p></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a magnesium-based hydrogen storage reactor: From material synthesis to reactor optimization\",\"authors\":\"\",\"doi\":\"10.1016/j.enconman.2024.118993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solid alloys hydrogen storage is one of the most promising large-scale hydrogen storage technologies. However, the uneven internal heat distribution greatly affects its hydrogen storage efficiency. This paper starts from the synthesis of Mg-Ni-La-xMn (x = 0, 1, 2, 3, 4 wt%) hydrogen storage alloys. Models of the hydrogen storage reactor are established and validated by experimental results. Three hydrogen reactor types, namely the single-tube reactor (SITR), the return-tube reactor (RETR) and the spiral-tube reactor (SPTR), are designed and compared from hydrogen absorption and desorption rates and temperature filed uniformity. Structural and operation parameters are further optimized. It is found that main components of the Mg-Ni-La-xMn alloys are Mg, Mg<sub>2</sub>Ni, LaNi<sub>5</sub>, LaMg<sub>12</sub> and MgNi<sub>0.8</sub>Mn<sub>0.2</sub>. Introducing Mn content can not only increase the maximum hydrogen absorption, but also accelerate the hydrogen absorption rates. The Mg-Ni-La-2Mn alloy has the best hydrogen absorption and desorption performance. Hydrogen storage reactor performance comparison with Mg-Ni-La-2Mn alloy shows the SITR can hardly reach saturation absorption, whose hydrogen absorption is only 3.1 wt%. The maximum temperature of the SPTR is 27 K higher than that of the RETR during hydrogen absorption. The optimal tube diameter and spacing of the RETR are 6 mm and 8 mm, respectively. The practical hydrogen absorption capacity of Mg-Ni-La-2Mn alloy in the RETR reaches 6.2 wt%. The optimal hydrogen supply pressure in the RETR is 0.8 MPa during hydrogen absorption. The optimal thermal oil velocities in the RETR are 2 m/s and 1 m/s for hydrogen absorption and desorption respectively.</p></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890424009348\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424009348","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

固体合金储氢是最有前途的大规模储氢技术之一。然而,内部热量分布不均极大地影响了其储氢效率。本文从 Mg-Ni-La-xMn (x = 0、1、2、3、4 wt%)储氢合金的合成入手,通过实验结果验证了储氢反应器模型的建立。建立了储氢反应器模型,并通过实验结果进行了验证。设计了三种类型的氢反应器,即单管反应器(SITR)、回流管反应器(RETR)和螺旋管反应器(SPTR),并从氢吸收率、解吸率和温度均匀性方面进行了比较。并进一步优化了结构和运行参数。研究发现 Mg-Ni-La-xMn 合金的主要成分是 Mg、MgNi、LaNi、LaMg 和 MgNiMn。引入锰含量不仅能提高最大吸氢量,还能加快吸氢速率。Mg-Ni-La-2Mn 合金的吸氢和解吸性能最好。与 Mg-Ni-La-2Mn 合金的储氢反应器性能比较显示,SITR 很难达到饱和吸氢,其吸氢量仅为 3.1 wt%。在吸氢过程中,SPTR 的最高温度比 RETR 高 27 K。RETR 的最佳管径和间距分别为 6 毫米和 8 毫米。RETR 中 Mg-Ni-La-2Mn 合金的实际氢吸收能力达到 6.2 wt%。在吸氢过程中,RETR 的最佳供氢压力为 0.8 MPa。RETR 中最佳热油速度分别为 2 m/s 和 1 m/s,用于吸氢和解吸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a magnesium-based hydrogen storage reactor: From material synthesis to reactor optimization

Solid alloys hydrogen storage is one of the most promising large-scale hydrogen storage technologies. However, the uneven internal heat distribution greatly affects its hydrogen storage efficiency. This paper starts from the synthesis of Mg-Ni-La-xMn (x = 0, 1, 2, 3, 4 wt%) hydrogen storage alloys. Models of the hydrogen storage reactor are established and validated by experimental results. Three hydrogen reactor types, namely the single-tube reactor (SITR), the return-tube reactor (RETR) and the spiral-tube reactor (SPTR), are designed and compared from hydrogen absorption and desorption rates and temperature filed uniformity. Structural and operation parameters are further optimized. It is found that main components of the Mg-Ni-La-xMn alloys are Mg, Mg2Ni, LaNi5, LaMg12 and MgNi0.8Mn0.2. Introducing Mn content can not only increase the maximum hydrogen absorption, but also accelerate the hydrogen absorption rates. The Mg-Ni-La-2Mn alloy has the best hydrogen absorption and desorption performance. Hydrogen storage reactor performance comparison with Mg-Ni-La-2Mn alloy shows the SITR can hardly reach saturation absorption, whose hydrogen absorption is only 3.1 wt%. The maximum temperature of the SPTR is 27 K higher than that of the RETR during hydrogen absorption. The optimal tube diameter and spacing of the RETR are 6 mm and 8 mm, respectively. The practical hydrogen absorption capacity of Mg-Ni-La-2Mn alloy in the RETR reaches 6.2 wt%. The optimal hydrogen supply pressure in the RETR is 0.8 MPa during hydrogen absorption. The optimal thermal oil velocities in the RETR are 2 m/s and 1 m/s for hydrogen absorption and desorption respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
期刊最新文献
3 E (Energy, Exergy and Economic) multi-objective optimization of a novel solar-assisted ocean thermal energy conversion system for integrated electricity and cooling production Sustainable agrobiorefinery system for advanced ethanol production from Opuntia prickly pear cactus nopales A multistage biogas slurry reflux and spray anaerobic digestion reactor for high solid anaerobic digestion: Performance and application evaluation Capital cost reduction in thermomechanical energy storage: An analysis of similitude-based reversible Brayton systems Application and progress of high-efficiency electro-hydrostatic actuator technology with energy recovery: A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1