可持续地提高粉煤灰基土工聚合物的性能:碱热活化和粒度对绿色生产的影响

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL Process Safety and Environmental Protection Pub Date : 2024-09-02 DOI:10.1016/j.psep.2024.08.133
{"title":"可持续地提高粉煤灰基土工聚合物的性能:碱热活化和粒度对绿色生产的影响","authors":"","doi":"10.1016/j.psep.2024.08.133","DOIUrl":null,"url":null,"abstract":"<div><p>Addressing the challenges posed by the slow reactivity of fly ash (FA) with alkali at ambient temperatures, this study delves into the enhancement of FA-based geopolymers through alkali thermal activation (ATA). The ATA process, conducted at 550°C for 1 h, significantly increases the availability of reactive silica and alumina, which are essential for geopolymerization. A critical focus of the research is the influence of FA particle size on ATA’s efficacy and the resultant mechanical properties of the geopolymers. Findings reveal that the ATA process facilitates the rapid dissolution of the vitreous phase in FA. This leads to a sequential release of silica and alumina, which is pivotal for the geopolymer’s matrix development. Notably, geopolymers synthesized from finely milled FA, post-ATA, demonstrate a marked increase in compressive strength, escalating from 30.51 MPa to an impressive 38.46 MPa. The study meticulously delineates geopolymerization into four distinct stages—initial dissolution, depolymerization, geopolycondensation and gelation, and final diffusion, with the initial dissolution and final diffusion stages being paramount in defining the reaction kinetics and the ultimate strength of the geopolymer. This enhanced understanding paves the way for optimizing FA utilization in geopolymers, promising a more sustainable and efficient pathway for producing construction materials with superior mechanical properties.</p></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable enhancement of fly ash-based geopolymers: Impact of Alkali thermal activation and particle size on green production\",\"authors\":\"\",\"doi\":\"10.1016/j.psep.2024.08.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Addressing the challenges posed by the slow reactivity of fly ash (FA) with alkali at ambient temperatures, this study delves into the enhancement of FA-based geopolymers through alkali thermal activation (ATA). The ATA process, conducted at 550°C for 1 h, significantly increases the availability of reactive silica and alumina, which are essential for geopolymerization. A critical focus of the research is the influence of FA particle size on ATA’s efficacy and the resultant mechanical properties of the geopolymers. Findings reveal that the ATA process facilitates the rapid dissolution of the vitreous phase in FA. This leads to a sequential release of silica and alumina, which is pivotal for the geopolymer’s matrix development. Notably, geopolymers synthesized from finely milled FA, post-ATA, demonstrate a marked increase in compressive strength, escalating from 30.51 MPa to an impressive 38.46 MPa. The study meticulously delineates geopolymerization into four distinct stages—initial dissolution, depolymerization, geopolycondensation and gelation, and final diffusion, with the initial dissolution and final diffusion stages being paramount in defining the reaction kinetics and the ultimate strength of the geopolymer. This enhanced understanding paves the way for optimizing FA utilization in geopolymers, promising a more sustainable and efficient pathway for producing construction materials with superior mechanical properties.</p></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957582024011121\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024011121","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对粉煤灰(FA)在常温下与碱的反应速度较慢所带来的挑战,本研究深入探讨了如何通过碱热活化(ATA)提高以粉煤灰为基础的土工聚合物的性能。ATA 工艺在 550°C 下进行 1 小时,可显著提高活性二氧化硅和氧化铝的可用性,而这两种物质对土工聚合至关重要。研究的一个关键重点是 FA 粒径对 ATA 效能和由此产生的土工聚合物机械性能的影响。研究结果表明,ATA 工艺有利于玻璃相在 FA 中的快速溶解。这导致了二氧化硅和氧化铝的相继释放,而二氧化硅和氧化铝对于土工聚合物基质的发展至关重要。值得注意的是,用细磨 FA 合成的土工聚合物 postATA 的抗压强度显著增加,从 30.51 兆帕增加到 38.46 兆帕,令人印象深刻。研究细致地将土工聚合划分为四个不同的阶段--初始溶解、解聚、土工缩合和凝胶化以及最终扩散,其中初始溶解和最终扩散阶段对于确定反应动力学和土工聚合物的最终强度至关重要。对这一问题的深入了解为优化 FA 在土工聚合物中的应用铺平了道路,有望为生产具有优异机械性能的建筑材料提供一条更可持续、更高效的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable enhancement of fly ash-based geopolymers: Impact of Alkali thermal activation and particle size on green production

Addressing the challenges posed by the slow reactivity of fly ash (FA) with alkali at ambient temperatures, this study delves into the enhancement of FA-based geopolymers through alkali thermal activation (ATA). The ATA process, conducted at 550°C for 1 h, significantly increases the availability of reactive silica and alumina, which are essential for geopolymerization. A critical focus of the research is the influence of FA particle size on ATA’s efficacy and the resultant mechanical properties of the geopolymers. Findings reveal that the ATA process facilitates the rapid dissolution of the vitreous phase in FA. This leads to a sequential release of silica and alumina, which is pivotal for the geopolymer’s matrix development. Notably, geopolymers synthesized from finely milled FA, post-ATA, demonstrate a marked increase in compressive strength, escalating from 30.51 MPa to an impressive 38.46 MPa. The study meticulously delineates geopolymerization into four distinct stages—initial dissolution, depolymerization, geopolycondensation and gelation, and final diffusion, with the initial dissolution and final diffusion stages being paramount in defining the reaction kinetics and the ultimate strength of the geopolymer. This enhanced understanding paves the way for optimizing FA utilization in geopolymers, promising a more sustainable and efficient pathway for producing construction materials with superior mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
期刊最新文献
An avalanche transistor-based Marx circuit pulse generator with sub-nanosecond, high frequency and high-voltage for pathogenic Escherichia coli ablation Fabrication of heterogeneous catalyst for production of biodiesel form municipal sludge Soil utilization analysis of synergistic pyrolysis products of flue gas desulfurization gypsum and biomass Dispersion and explosion characteristics of multi-phase fuel with different charge structure Optimizing multivariate alarm systems: A study on joint false alarm rate, and joint missed alarm rate using linear programming technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1