{"title":"中国插电式混合动力电动汽车的转型:从运行碳角度看","authors":"","doi":"10.1016/j.enconman.2024.119011","DOIUrl":null,"url":null,"abstract":"<div><p>Assessing the emissions of plug-in hybrid electric vehicle (PHEV) operations is crucial for accelerating the carbon–neutral transition in the passenger car sector. This study is the first to adopt a bottom-up model to measure the real-world energy use and carbon dioxide emissions of China’s top twenty selling PHEV models across different regions from 2020 to 2022. The results indicate that (1) the actual electricity intensity of the best-selling PHEV models (20.2–38.2 kWh/100 km) was 30–40 % higher than the New European Driving Cycle values, and the actual gasoline intensity (4.7–23.5 L/100 km) was 3–6 times greater than the New European Driving Cycle values. (2) The overall energy use of the best-selling models varied among different regions, and the energy use from 2020 to 2022 in Southern China was double that Northern China and the Yangtze River Middle Reach. (3) The top-selling models emitted 4.7 megatons of carbon dioxide nationwide from 2020 to 2022, with 1.9 megatons released by electricity consumption and 2.8 megatons released by gasoline combustion. Furthermore, targeted policy implications for expediting the carbon–neutral transition within the passenger car sector are proposed. In essence, this study explores and compares benchmark data at both the national and regional levels, along with performance metrics associated with PHEV operations. The main objective is to aid nationwide decarbonization efforts, focusing on carbon reduction and promoting the rapid transition of road transportation toward a net-zero carbon future.</p></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S019689042400952X/pdfft?md5=bc373c9d603de08ae41e15d9afdf7560&pid=1-s2.0-S019689042400952X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chinas plug-in hybrid electric vehicle transition: An operational carbon perspective\",\"authors\":\"\",\"doi\":\"10.1016/j.enconman.2024.119011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Assessing the emissions of plug-in hybrid electric vehicle (PHEV) operations is crucial for accelerating the carbon–neutral transition in the passenger car sector. This study is the first to adopt a bottom-up model to measure the real-world energy use and carbon dioxide emissions of China’s top twenty selling PHEV models across different regions from 2020 to 2022. The results indicate that (1) the actual electricity intensity of the best-selling PHEV models (20.2–38.2 kWh/100 km) was 30–40 % higher than the New European Driving Cycle values, and the actual gasoline intensity (4.7–23.5 L/100 km) was 3–6 times greater than the New European Driving Cycle values. (2) The overall energy use of the best-selling models varied among different regions, and the energy use from 2020 to 2022 in Southern China was double that Northern China and the Yangtze River Middle Reach. (3) The top-selling models emitted 4.7 megatons of carbon dioxide nationwide from 2020 to 2022, with 1.9 megatons released by electricity consumption and 2.8 megatons released by gasoline combustion. Furthermore, targeted policy implications for expediting the carbon–neutral transition within the passenger car sector are proposed. In essence, this study explores and compares benchmark data at both the national and regional levels, along with performance metrics associated with PHEV operations. The main objective is to aid nationwide decarbonization efforts, focusing on carbon reduction and promoting the rapid transition of road transportation toward a net-zero carbon future.</p></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S019689042400952X/pdfft?md5=bc373c9d603de08ae41e15d9afdf7560&pid=1-s2.0-S019689042400952X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019689042400952X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019689042400952X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Chinas plug-in hybrid electric vehicle transition: An operational carbon perspective
Assessing the emissions of plug-in hybrid electric vehicle (PHEV) operations is crucial for accelerating the carbon–neutral transition in the passenger car sector. This study is the first to adopt a bottom-up model to measure the real-world energy use and carbon dioxide emissions of China’s top twenty selling PHEV models across different regions from 2020 to 2022. The results indicate that (1) the actual electricity intensity of the best-selling PHEV models (20.2–38.2 kWh/100 km) was 30–40 % higher than the New European Driving Cycle values, and the actual gasoline intensity (4.7–23.5 L/100 km) was 3–6 times greater than the New European Driving Cycle values. (2) The overall energy use of the best-selling models varied among different regions, and the energy use from 2020 to 2022 in Southern China was double that Northern China and the Yangtze River Middle Reach. (3) The top-selling models emitted 4.7 megatons of carbon dioxide nationwide from 2020 to 2022, with 1.9 megatons released by electricity consumption and 2.8 megatons released by gasoline combustion. Furthermore, targeted policy implications for expediting the carbon–neutral transition within the passenger car sector are proposed. In essence, this study explores and compares benchmark data at both the national and regional levels, along with performance metrics associated with PHEV operations. The main objective is to aid nationwide decarbonization efforts, focusing on carbon reduction and promoting the rapid transition of road transportation toward a net-zero carbon future.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.