{"title":"利用更新的拉格朗日非局部一般粒子动力学方法对地震诱发的山体滑坡进行数值建模","authors":"Jin-Hu Pan , Peng Yin , Xiao-Ping Zhou","doi":"10.1016/j.enggeo.2024.107641","DOIUrl":null,"url":null,"abstract":"<div><p>Developing a robust numerical method to model earthquake-induced landslides has long been a persistent challenge in the field of computational geotechnical engineering. Recently, the meshless methods based on nonlocal theory have piqued the interest of researchers. However, the application of nonlocal theory in seismic analysis is currently limited. This paper proposed a numerical framework based on the updated Lagrangian nonlocal general particle dynamics (UL-NGPD) method to analyze earthquake-induced landslide problems. The UL-NGPD method benefiting from the update support domain can capture the whole process of slope run-out induced by earthquakes. To enhance the numerical stability of the proposed method, several optimizing strategies are proposed. In the current framework, the seismic waves are input through the proposed boundary treatments of nonlocal form. Besides, a nonlocal friction model with velocity-weakening is proposed to accurately simulate the movement process of soils on a rocky sliding bed. The proposed framework is validated by the simulations of several classic problems, including the collapse of sand and the shake table test. The performance of the proposed approach is further demonstrated through simulating the landslides induced by earthquakes. The numerical results consistent with recorded data indicate that the UL-NGPD method has an excellent capacity to deal with earthquake-induced landslide problems.</p></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"340 ","pages":"Article 107641"},"PeriodicalIF":6.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical modeling of earthquake-induced landslides using updated Lagrangian nonlocal general particle dynamics method\",\"authors\":\"Jin-Hu Pan , Peng Yin , Xiao-Ping Zhou\",\"doi\":\"10.1016/j.enggeo.2024.107641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing a robust numerical method to model earthquake-induced landslides has long been a persistent challenge in the field of computational geotechnical engineering. Recently, the meshless methods based on nonlocal theory have piqued the interest of researchers. However, the application of nonlocal theory in seismic analysis is currently limited. This paper proposed a numerical framework based on the updated Lagrangian nonlocal general particle dynamics (UL-NGPD) method to analyze earthquake-induced landslide problems. The UL-NGPD method benefiting from the update support domain can capture the whole process of slope run-out induced by earthquakes. To enhance the numerical stability of the proposed method, several optimizing strategies are proposed. In the current framework, the seismic waves are input through the proposed boundary treatments of nonlocal form. Besides, a nonlocal friction model with velocity-weakening is proposed to accurately simulate the movement process of soils on a rocky sliding bed. The proposed framework is validated by the simulations of several classic problems, including the collapse of sand and the shake table test. The performance of the proposed approach is further demonstrated through simulating the landslides induced by earthquakes. The numerical results consistent with recorded data indicate that the UL-NGPD method has an excellent capacity to deal with earthquake-induced landslide problems.</p></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"340 \",\"pages\":\"Article 107641\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795224002412\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224002412","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Numerical modeling of earthquake-induced landslides using updated Lagrangian nonlocal general particle dynamics method
Developing a robust numerical method to model earthquake-induced landslides has long been a persistent challenge in the field of computational geotechnical engineering. Recently, the meshless methods based on nonlocal theory have piqued the interest of researchers. However, the application of nonlocal theory in seismic analysis is currently limited. This paper proposed a numerical framework based on the updated Lagrangian nonlocal general particle dynamics (UL-NGPD) method to analyze earthquake-induced landslide problems. The UL-NGPD method benefiting from the update support domain can capture the whole process of slope run-out induced by earthquakes. To enhance the numerical stability of the proposed method, several optimizing strategies are proposed. In the current framework, the seismic waves are input through the proposed boundary treatments of nonlocal form. Besides, a nonlocal friction model with velocity-weakening is proposed to accurately simulate the movement process of soils on a rocky sliding bed. The proposed framework is validated by the simulations of several classic problems, including the collapse of sand and the shake table test. The performance of the proposed approach is further demonstrated through simulating the landslides induced by earthquakes. The numerical results consistent with recorded data indicate that the UL-NGPD method has an excellent capacity to deal with earthquake-induced landslide problems.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.