{"title":"将功能性生境和鱼类种群动态模型联系起来,改进河流恢复规划和评估。","authors":"","doi":"10.1016/j.jenvman.2024.122331","DOIUrl":null,"url":null,"abstract":"<div><p>In-stream habitat enhancement is widely used to improve ecological conditions in rivers, often prioritizing key fish life stages such as spawning and juvenile development. However, no standard approaches exist to predict their effects on fish recruitment and populations. Here, we use a spatially-explicit population dynamics model that integrates functional habitat dynamics to assess the impact of two rehabilitation measures in a hydropower-impacted section of the Inn River (SE Germany) on the recruitment potential of four rheophilic and lithophilic fish species — grayling, nase, barbel, and chub. Rehabilitation measures implemented included the construction of a bypass channel and an island side-channel system to improve both longitudinal connectivity and habitat conditions. In addition, we analyzed two alternatives, which would enhance functional availability of nursery habitats from actual 33.2% to 66.8% and 95.3%, respectively. The results suggest that the improved habitat conditions will yield on average additional 14.9 individuals/ha (5.6 kg/ha) of the target species. However, the limited accessibility of usable nursery habitat constitutes a significant recruitment bottleneck for all species. In the alternative scenarios, the increase of functional connectivity will result in average densities of 17.9 and 25.8 individuals/ha, respectively. However, potential further improvements are species-specific, because of distinct population responses to spawning-to-nursery habitat ratios, with density changes varying between -11.7% for grayling and +172.6% for chub. This study not only demonstrates the applicability of the modeling approach for assessing and planning rehabilitation measures but also emphasizes the importance of considering habitat ratios and their functional connectivity to optimize recruitment potential.</p></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030147972402317X/pdfft?md5=a635bc4890021456e7007a246e205e61&pid=1-s2.0-S030147972402317X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Linking functional habitat and fish population dynamics modeling to improve river rehabilitation planning and assessment\",\"authors\":\"\",\"doi\":\"10.1016/j.jenvman.2024.122331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In-stream habitat enhancement is widely used to improve ecological conditions in rivers, often prioritizing key fish life stages such as spawning and juvenile development. However, no standard approaches exist to predict their effects on fish recruitment and populations. Here, we use a spatially-explicit population dynamics model that integrates functional habitat dynamics to assess the impact of two rehabilitation measures in a hydropower-impacted section of the Inn River (SE Germany) on the recruitment potential of four rheophilic and lithophilic fish species — grayling, nase, barbel, and chub. Rehabilitation measures implemented included the construction of a bypass channel and an island side-channel system to improve both longitudinal connectivity and habitat conditions. In addition, we analyzed two alternatives, which would enhance functional availability of nursery habitats from actual 33.2% to 66.8% and 95.3%, respectively. The results suggest that the improved habitat conditions will yield on average additional 14.9 individuals/ha (5.6 kg/ha) of the target species. However, the limited accessibility of usable nursery habitat constitutes a significant recruitment bottleneck for all species. In the alternative scenarios, the increase of functional connectivity will result in average densities of 17.9 and 25.8 individuals/ha, respectively. However, potential further improvements are species-specific, because of distinct population responses to spawning-to-nursery habitat ratios, with density changes varying between -11.7% for grayling and +172.6% for chub. This study not only demonstrates the applicability of the modeling approach for assessing and planning rehabilitation measures but also emphasizes the importance of considering habitat ratios and their functional connectivity to optimize recruitment potential.</p></div>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S030147972402317X/pdfft?md5=a635bc4890021456e7007a246e205e61&pid=1-s2.0-S030147972402317X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030147972402317X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030147972402317X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Linking functional habitat and fish population dynamics modeling to improve river rehabilitation planning and assessment
In-stream habitat enhancement is widely used to improve ecological conditions in rivers, often prioritizing key fish life stages such as spawning and juvenile development. However, no standard approaches exist to predict their effects on fish recruitment and populations. Here, we use a spatially-explicit population dynamics model that integrates functional habitat dynamics to assess the impact of two rehabilitation measures in a hydropower-impacted section of the Inn River (SE Germany) on the recruitment potential of four rheophilic and lithophilic fish species — grayling, nase, barbel, and chub. Rehabilitation measures implemented included the construction of a bypass channel and an island side-channel system to improve both longitudinal connectivity and habitat conditions. In addition, we analyzed two alternatives, which would enhance functional availability of nursery habitats from actual 33.2% to 66.8% and 95.3%, respectively. The results suggest that the improved habitat conditions will yield on average additional 14.9 individuals/ha (5.6 kg/ha) of the target species. However, the limited accessibility of usable nursery habitat constitutes a significant recruitment bottleneck for all species. In the alternative scenarios, the increase of functional connectivity will result in average densities of 17.9 and 25.8 individuals/ha, respectively. However, potential further improvements are species-specific, because of distinct population responses to spawning-to-nursery habitat ratios, with density changes varying between -11.7% for grayling and +172.6% for chub. This study not only demonstrates the applicability of the modeling approach for assessing and planning rehabilitation measures but also emphasizes the importance of considering habitat ratios and their functional connectivity to optimize recruitment potential.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.