在基于废水的流行病学中报告人口规模:范围审查。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-11-25 Epub Date: 2024-09-05 DOI:10.1016/j.scitotenv.2024.176076
Mackay Price, Bradley S Simpson, Benjamin J Tscharke, Fahad Ahmed, Emma L Keller, Hannah Sussex, Melanie Kah, Katarzyna Sila-Nowicka, Andrew Chappell, Cobus Gerber, Sam Trowsdale
{"title":"在基于废水的流行病学中报告人口规模:范围审查。","authors":"Mackay Price, Bradley S Simpson, Benjamin J Tscharke, Fahad Ahmed, Emma L Keller, Hannah Sussex, Melanie Kah, Katarzyna Sila-Nowicka, Andrew Chappell, Cobus Gerber, Sam Trowsdale","doi":"10.1016/j.scitotenv.2024.176076","DOIUrl":null,"url":null,"abstract":"<p><p>Knowledge of the number of people present in a catchment is fundamental for the assessment of spatio-temporal trends in wastewater-based epidemiology (WBE). Accurately estimating the number of people connected to wastewater catchments is challenging however, because populations are dynamic. Methods used to estimate population size can significantly influence the calculation and interpretation of population-normalised wastewater data (PNWD). This paper systematically reviews the reporting of population data in 339 WBE studies. Studies were evaluated based on their reporting of population size, the source of population data, the population calculation methods, and the uncertainties in population estimates. Most papers reported population size (96 %) and the source of population data (60 %). Fewer studies reported the uncertainties in their population data (50 %) and the methods used to calculate these estimates (28 %). This is relevant because different methods have unique strengths and limitations which can affect the accuracy of PNWD. Only 64 studies (19 %) reported all four components of population data. The reporting of population data has remained consistent in the past decade. Based on the findings, we recommend generalised reporting criteria for population data in WBE. As WBE is further mainstreamed and applied, the clear and comprehensive reporting of population data will only become increasingly important.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"176076"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reporting population size in wastewater-based epidemiology: A scoping review.\",\"authors\":\"Mackay Price, Bradley S Simpson, Benjamin J Tscharke, Fahad Ahmed, Emma L Keller, Hannah Sussex, Melanie Kah, Katarzyna Sila-Nowicka, Andrew Chappell, Cobus Gerber, Sam Trowsdale\",\"doi\":\"10.1016/j.scitotenv.2024.176076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knowledge of the number of people present in a catchment is fundamental for the assessment of spatio-temporal trends in wastewater-based epidemiology (WBE). Accurately estimating the number of people connected to wastewater catchments is challenging however, because populations are dynamic. Methods used to estimate population size can significantly influence the calculation and interpretation of population-normalised wastewater data (PNWD). This paper systematically reviews the reporting of population data in 339 WBE studies. Studies were evaluated based on their reporting of population size, the source of population data, the population calculation methods, and the uncertainties in population estimates. Most papers reported population size (96 %) and the source of population data (60 %). Fewer studies reported the uncertainties in their population data (50 %) and the methods used to calculate these estimates (28 %). This is relevant because different methods have unique strengths and limitations which can affect the accuracy of PNWD. Only 64 studies (19 %) reported all four components of population data. The reporting of population data has remained consistent in the past decade. Based on the findings, we recommend generalised reporting criteria for population data in WBE. As WBE is further mainstreamed and applied, the clear and comprehensive reporting of population data will only become increasingly important.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"176076\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.176076\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.176076","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

了解集水区的人口数量对于评估基于废水的流行病学(WBE)的时空趋势至关重要。然而,由于人口是动态变化的,因此准确估算与废水集水区相连的人口数量具有挑战性。用于估算人口数量的方法会极大地影响人口归一化废水数据 (PNWD) 的计算和解释。本文系统回顾了 339 项世界水资源评估研究中对人口数据的报告。评估的依据包括对人口规模的报告、人口数据的来源、人口计算方法以及人口估计值的不确定性。大多数论文报告了人口数量(96%)和人口数据来源(60%)。较少的研究报告了人口数据的不确定性(50%)和计算这些估计值的方法(28%)。这一点很重要,因为不同的方法有其独特的优势和局限性,可能会影响预测人口出生率的准确性。只有 64 项研究(19%)报告了人口数据的所有四个组成部分。在过去十年中,人口数据的报告情况保持一致。根据研究结果,我们建议在世界教育局中采用通用的人口数据报告标准。随着世界教育大会的进一步主流化和应用,明确、全面地报告人口数据将变得越来越重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reporting population size in wastewater-based epidemiology: A scoping review.

Knowledge of the number of people present in a catchment is fundamental for the assessment of spatio-temporal trends in wastewater-based epidemiology (WBE). Accurately estimating the number of people connected to wastewater catchments is challenging however, because populations are dynamic. Methods used to estimate population size can significantly influence the calculation and interpretation of population-normalised wastewater data (PNWD). This paper systematically reviews the reporting of population data in 339 WBE studies. Studies were evaluated based on their reporting of population size, the source of population data, the population calculation methods, and the uncertainties in population estimates. Most papers reported population size (96 %) and the source of population data (60 %). Fewer studies reported the uncertainties in their population data (50 %) and the methods used to calculate these estimates (28 %). This is relevant because different methods have unique strengths and limitations which can affect the accuracy of PNWD. Only 64 studies (19 %) reported all four components of population data. The reporting of population data has remained consistent in the past decade. Based on the findings, we recommend generalised reporting criteria for population data in WBE. As WBE is further mainstreamed and applied, the clear and comprehensive reporting of population data will only become increasingly important.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Deciphering the point source carbon footprint puzzle: Land use dynamics and socio-economic drivers. Deep-sea ecosystems of the Indian Ocean >1000 m. Effects of river infrastructure, dredged material placement, and altered hydrogeomorphic processes: The stress ecology of floodplain wetlands and associated fish communities. Environmental stressors and zoonoses in the Arctic: Learning from the past to prepare for the future. Use of electron microscopy to determine presence of coal dust in a neighborhood bordering an open-air coal terminal in Curtis Bay, Baltimore, Maryland, USA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1