吡柔比星和盐霉素同时给药可协同增强癌症疗效并降低癌症复发风险

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY AAPS PharmSciTech Pub Date : 2024-09-07 DOI:10.1208/s12249-024-02918-3
Mohd Anees, Priya Gupta, Harshdeep Kaur, Surender Kharbanda, Harpal Singh
{"title":"吡柔比星和盐霉素同时给药可协同增强癌症疗效并降低癌症复发风险","authors":"Mohd Anees, Priya Gupta, Harshdeep Kaur, Surender Kharbanda, Harpal Singh","doi":"10.1208/s12249-024-02918-3","DOIUrl":null,"url":null,"abstract":"<p><p>Pirarubicin attracted considerable attention in clinical studies because of its high therapeutic efficacy and reduced toxicity in comparison with other anthracyclines. Nevertheless, ~ 30% patients undergoing PIRA treatment still experience relapse and metastasis. Clinical advancements unveiled that cancer stem cells (CSCs) residing in the tumor constitutes a major factor for such limitations and subsequently are the reason for treatment failure. Consequently, eradicating CSCs alongside bulk tumor is a crucial undertaking to attain utmost therapeutic efficacy of the treatment. Nevertheless, majority of the CSCs inhibitors currently under examination lack specificity, show unsynchronized bioavailability with other primary treatments and exhibit notable toxicity in their therapeutic applications, which is primarily attributable to their inadequate tumor-targeting capabilities. Therefore, we have developed a biodegradable polylactic acid based blend block copolymeric NPs for concomitant delivery of CSCs inhibitor Salinomycin (SAL) & chemotherapeutic drug Pirarubicin (PIRA) with an aim to improve the efficacy of treatment and prevent cancer relapse. Prepared NPs showed < 100 nm size and excellent loading with sustained release for both the drugs. Also, PIRA:SAL co-loaded NPs exhibits synergistically enhanced cytotoxicity against cancer cell as well as CSCs. Most importantly, NPs mediated co-delivery of the drugs showed complete tumor eradication, without any reoccurrence throughout the surveillance period. Additionally, NPs treatment didn't show any histopathological alteration in vital organs confirming their non-toxic nature. Altogether, present study concludes that the developed PIRA:SAL NPs have excellent efficacy for tumor regression as well as prevention of cancer relapse, hence can be used as a potential combination therapy for cancer treatment.</p>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concomitant Delivery of Pirarubicin and Salinomycin Synergistically Enhanced the Efficacy of Cancer Therapy and Reduced the Risk of Cancer Relapse.\",\"authors\":\"Mohd Anees, Priya Gupta, Harshdeep Kaur, Surender Kharbanda, Harpal Singh\",\"doi\":\"10.1208/s12249-024-02918-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pirarubicin attracted considerable attention in clinical studies because of its high therapeutic efficacy and reduced toxicity in comparison with other anthracyclines. Nevertheless, ~ 30% patients undergoing PIRA treatment still experience relapse and metastasis. Clinical advancements unveiled that cancer stem cells (CSCs) residing in the tumor constitutes a major factor for such limitations and subsequently are the reason for treatment failure. Consequently, eradicating CSCs alongside bulk tumor is a crucial undertaking to attain utmost therapeutic efficacy of the treatment. Nevertheless, majority of the CSCs inhibitors currently under examination lack specificity, show unsynchronized bioavailability with other primary treatments and exhibit notable toxicity in their therapeutic applications, which is primarily attributable to their inadequate tumor-targeting capabilities. Therefore, we have developed a biodegradable polylactic acid based blend block copolymeric NPs for concomitant delivery of CSCs inhibitor Salinomycin (SAL) & chemotherapeutic drug Pirarubicin (PIRA) with an aim to improve the efficacy of treatment and prevent cancer relapse. Prepared NPs showed < 100 nm size and excellent loading with sustained release for both the drugs. Also, PIRA:SAL co-loaded NPs exhibits synergistically enhanced cytotoxicity against cancer cell as well as CSCs. Most importantly, NPs mediated co-delivery of the drugs showed complete tumor eradication, without any reoccurrence throughout the surveillance period. Additionally, NPs treatment didn't show any histopathological alteration in vital organs confirming their non-toxic nature. Altogether, present study concludes that the developed PIRA:SAL NPs have excellent efficacy for tumor regression as well as prevention of cancer relapse, hence can be used as a potential combination therapy for cancer treatment.</p>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1208/s12249-024-02918-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12249-024-02918-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

与其他蒽环类药物相比,吡柔比星具有疗效高、毒性低的特点,因此在临床研究中备受关注。然而,约 30% 接受 PIRA 治疗的患者仍会出现复发和转移。临床研究发现,肿瘤中的癌症干细胞(CSCs)是造成这种限制的主要因素,也是治疗失败的原因。因此,要获得最佳疗效,根除肿瘤干细胞是一项至关重要的工作。然而,目前研究的大多数 CSCs 抑制剂缺乏特异性,生物利用度与其他主要治疗方法不同步,在治疗应用中表现出明显的毒性,这主要归因于它们的肿瘤靶向能力不足。因此,我们开发了一种可生物降解的聚乳酸基混合嵌段共聚物 NPs,用于同时递送 CSCs 抑制剂 Salinomycin (SAL) 和化疗药物 Pirarubicin (PIRA),以提高疗效并防止癌症复发。制备的 NPs 显示
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Concomitant Delivery of Pirarubicin and Salinomycin Synergistically Enhanced the Efficacy of Cancer Therapy and Reduced the Risk of Cancer Relapse.

Pirarubicin attracted considerable attention in clinical studies because of its high therapeutic efficacy and reduced toxicity in comparison with other anthracyclines. Nevertheless, ~ 30% patients undergoing PIRA treatment still experience relapse and metastasis. Clinical advancements unveiled that cancer stem cells (CSCs) residing in the tumor constitutes a major factor for such limitations and subsequently are the reason for treatment failure. Consequently, eradicating CSCs alongside bulk tumor is a crucial undertaking to attain utmost therapeutic efficacy of the treatment. Nevertheless, majority of the CSCs inhibitors currently under examination lack specificity, show unsynchronized bioavailability with other primary treatments and exhibit notable toxicity in their therapeutic applications, which is primarily attributable to their inadequate tumor-targeting capabilities. Therefore, we have developed a biodegradable polylactic acid based blend block copolymeric NPs for concomitant delivery of CSCs inhibitor Salinomycin (SAL) & chemotherapeutic drug Pirarubicin (PIRA) with an aim to improve the efficacy of treatment and prevent cancer relapse. Prepared NPs showed < 100 nm size and excellent loading with sustained release for both the drugs. Also, PIRA:SAL co-loaded NPs exhibits synergistically enhanced cytotoxicity against cancer cell as well as CSCs. Most importantly, NPs mediated co-delivery of the drugs showed complete tumor eradication, without any reoccurrence throughout the surveillance period. Additionally, NPs treatment didn't show any histopathological alteration in vital organs confirming their non-toxic nature. Altogether, present study concludes that the developed PIRA:SAL NPs have excellent efficacy for tumor regression as well as prevention of cancer relapse, hence can be used as a potential combination therapy for cancer treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
期刊最新文献
Surface Solid Dispersion of Ketoconazole on Trehalose Dihydrate using Spray Drying to Achieve Enhanced Dissolution Rate. Monitoring of Isothermal Crystallization and Time-Temperature Transformation of Amorphous Felodipine: The Time-Domain Nuclear Magnetic Resonance Method. PEGylated pH-Responsive Liposomes for Enhancing the Intracellular Uptake and Cytotoxicity of Paclitaxel in MCF-7 Breast Cancer Cells Preparation and In Vitro Evaluation of Montelukast Sodium-Loaded 3D Printed Orodispersible Films for the Treatment of Asthma Development, Pharmacokinetics and Antimalarial Evaluation of Dose Flexible 3D Printlets of Dapsone for Pediatric Patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1