社会性昆虫繁殖过程中的集体决策:蜜蜂(Apis mellifera)蜂王继位的概念模型。

IF 5.8 1区 农林科学 Q1 BIOLOGY Current opinion in insect science Pub Date : 2024-09-05 DOI:10.1016/j.cois.2024.101260
{"title":"社会性昆虫繁殖过程中的集体决策:蜜蜂(Apis mellifera)蜂王继位的概念模型。","authors":"","doi":"10.1016/j.cois.2024.101260","DOIUrl":null,"url":null,"abstract":"<div><p>Insect societies have served as excellent examples for co-ordinated decision-making. The production of sexuals is the most important group decision that social insects face since it affects both direct and indirect fitness. The behavioral processes by which queens are selected have been of particular interest since they are the primary egg layers that enable colony function. As a model system, previous research on honey bee reproduction has focused on swarming behavior and nest site selection. One significant gap in our knowledge of the collective decision-making process over reproduction is how daughter queens simply replace old or failing queens (=supersedure) rather than being reared for the purposes of colony fission (=swarming) or queen loss (=emergency queen rearing). Here, I present a conceptual model that provides a framework for understanding the collective decisions by colonies to supersede their mother queens, as well as provide some key recommendations on future empirical work.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214574524001020/pdfft?md5=5435dd5aaeec7a1569e1516f727d3a34&pid=1-s2.0-S2214574524001020-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Collective decision-making during reproduction in social insects: a conceptual model for queen supersedure in honey bees (Apis mellifera)\",\"authors\":\"\",\"doi\":\"10.1016/j.cois.2024.101260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Insect societies have served as excellent examples for co-ordinated decision-making. The production of sexuals is the most important group decision that social insects face since it affects both direct and indirect fitness. The behavioral processes by which queens are selected have been of particular interest since they are the primary egg layers that enable colony function. As a model system, previous research on honey bee reproduction has focused on swarming behavior and nest site selection. One significant gap in our knowledge of the collective decision-making process over reproduction is how daughter queens simply replace old or failing queens (=supersedure) rather than being reared for the purposes of colony fission (=swarming) or queen loss (=emergency queen rearing). Here, I present a conceptual model that provides a framework for understanding the collective decisions by colonies to supersede their mother queens, as well as provide some key recommendations on future empirical work.</p></div>\",\"PeriodicalId\":11038,\"journal\":{\"name\":\"Current opinion in insect science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214574524001020/pdfft?md5=5435dd5aaeec7a1569e1516f727d3a34&pid=1-s2.0-S2214574524001020-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in insect science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214574524001020\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in insect science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214574524001020","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

昆虫社会是协调决策的绝佳范例。有性生殖是社会性昆虫面临的最重要的群体决策,因为它会影响直接和间接的适应性。由于蜂王是实现群体功能的主要产卵者,因此选择蜂王的行为过程尤其引人关注。作为一种模式系统,以前对蜜蜂繁殖的研究主要集中在蜂群行为和巢址选择上。我们对蜂群繁殖集体决策过程的认识存在一个重大空白,那就是子蜂王是如何简单地取代老蜂王或衰竭蜂王(=超度),而不是为了蜂群分裂(=蜂群蜂拥)或蜂王丧失(=紧急蜂王饲养)的目的而饲养的。在此,我提出了一个概念模型,为理解蜂群取代母王的集体决策提供了一个框架,并对未来的实证工作提出了一些重要建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collective decision-making during reproduction in social insects: a conceptual model for queen supersedure in honey bees (Apis mellifera)

Insect societies have served as excellent examples for co-ordinated decision-making. The production of sexuals is the most important group decision that social insects face since it affects both direct and indirect fitness. The behavioral processes by which queens are selected have been of particular interest since they are the primary egg layers that enable colony function. As a model system, previous research on honey bee reproduction has focused on swarming behavior and nest site selection. One significant gap in our knowledge of the collective decision-making process over reproduction is how daughter queens simply replace old or failing queens (=supersedure) rather than being reared for the purposes of colony fission (=swarming) or queen loss (=emergency queen rearing). Here, I present a conceptual model that provides a framework for understanding the collective decisions by colonies to supersede their mother queens, as well as provide some key recommendations on future empirical work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in insect science
Current opinion in insect science BIOLOGYECOLOGYENTOMOLOGY-ECOLOGY
CiteScore
10.40
自引率
1.90%
发文量
113
期刊介绍: Current Opinion in Insect Science is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up–to–date with the expanding volume of information published in the field of Insect Science. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following 11 areas are covered by Current Opinion in Insect Science. -Ecology -Insect genomics -Global Change Biology -Molecular Physiology (Including Immunity) -Pests and Resistance -Parasites, Parasitoids and Biological Control -Behavioural Ecology -Development and Regulation -Social Insects -Neuroscience -Vectors and Medical and Veterinary Entomology There is also a section that changes every year to reflect hot topics in the field. Section Editors, who are major authorities in their area, are appointed by the Editors of the journal. They divide their section into a number of topics, ensuring that the field is comprehensively covered and that all issues of current importance are emphasized. Section Editors commission articles from leading scientists on each topic that they have selected and the commissioned authors write short review articles in which they present recent developments in their subject, emphasizing the aspects that, in their opinion, are most important. In addition, they provide short annotations to the papers that they consider to be most interesting from all those published in their topic over the previous year.
期刊最新文献
Challenges of climate change and air pollution for volatile-mediated plant-parasitoid signalling. Decoding Sex Differences: How GABA Shapes Drosophila Behavior. Prospects on non-canonical olfaction in the mosquito and other organisms: why co-express? Editorial Overview: Diverse Actions of GABA in Insect Nervous Systems. Evolution of insect metamorphosis - an update.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1